Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015, Article ID 190607, 12 pages
http://dx.doi.org/10.1155/2015/190607
Research Article

A Measurement Based Shadow Fading Model for Vehicle-to-Vehicle Network Simulations

1Department of Electrical and Information Technology, Lund University, P.O. Box 118, 22 100 Lund, Sweden
2The Centre for Research on Embedded Systems, Halmstad University, Halmstad, Sweden
3Department of Advanced Technology and Research, Volvo Group Trucks Technology (GTT), Götaverksg. 10, 405 08 Gothenburg, Sweden

Received 16 February 2015; Accepted 17 May 2015

Academic Editor: Christoph F. Mecklenbräuker

Copyright © 2015 Taimoor Abbas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Gozalvez, M. Sepulcre, and R. Bauza, “Impact of the radio channel modelling on the performance of VANET communication protocols,” Telecommunication Systems, vol. 50, no. 3, pp. 149–167, 2012. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Acosta-Marum and M. A. Ingram, “Six time- and frequency-selective empirical channel models for vehicular wireless LANs,” IEEE Vehicular Technology Magazine, vol. 2, no. 4, pp. 4–11, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Sen and D. W. Matolak, “Vehicle-vehicle channel models for the 5 GHz band,” IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp. 235–245, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Paier, J. Karedal, N. Czink et al., “Characterization of vehicle-to-vehicle radio channels from measurements at 5.2 GHz,” Wireless Personal Communications, vol. 50, no. 1, pp. 19–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. J. S. Otto, F. E. Bustamante, and R. A. Berry, “Down the block and around the corner: the impact of radio propagation on inter-vehicle wireless communication,” in Proceedings of the 29th IEEE International Conference on Distributed Computing Systems Workshops (ICDCS '09), pp. 605–614, June 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. O. Renaudin, V.-M. Kolmonen, P. Vainikainen, and C. Oestges, “Non-stationary narrowband MIMO inter-vehicle channel characterization in the 5-GHz band,” IEEE Transactions on Vehicular Technology, vol. 59, no. 4, pp. 2007–2015, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Molisch, Wireless Communications, IEEE Press-Wiley, Chichester, UK, 2005.
  8. T. Abbas, J. Karedal, F. Tufvesson, A. Paier, L. Bernadó, and A. F. Molisch, “Directional analysis of vehicle-to-vehicle propagation channels,” in Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC-Spring '11), pp. 1–5, May 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. A. F. Molisch, F. Tufvesson, J. Karedal, and C. F. Mecklenbräuker, “A survey on vehicle-to-vehicle propagation channels,” IEEE Wireless Communications, vol. 16, no. 6, pp. 12–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Abbas, L. Bernado, A. Thiel, C. Mecklenbrauker, and F. Tufvesson, “Radio channel properties for vehicular communication: merging lanes versus urban intersections,” IEEE Vehicular Technology Magazine, vol. 8, no. 4, pp. 27–34, 2013. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Mangel, M. Michl, O. Klemp, and H. Hartenstein, “Real-world measurements of non-line-of-sight reception quality for 5.9 GHz IEEE 802.11p at intersections,” in Communication Technologies for Vehicles, vol. 6596 of Lecture Notes in Computer Science, pp. 189–202, Springer, Berlin, Germany, 2011. View at Publisher · View at Google Scholar
  12. E. Giordano, R. Frank, G. Pau, and M. Gerla, “CORNER: a realistic urban propagation model for VANET,” in Proceedings of the 7th International Conference on Wireless On-demand Network Systems and Services (WONS '10), pp. 57–60, Kranjska Gora, Slovenia, February 2010. View at Publisher · View at Google Scholar
  13. T. Mangel, O. Klemp, and H. Hartenstein, “5.9 GHz inter-vehicle communication at intersections: a validated non-line-of-sight path-loss and fading model,” EURASIP Journal on Wireless Communications and Networking, vol. 2011, no. 1, article 182, 2011. View at Publisher · View at Google Scholar
  14. P. Paschalidis, K. Mahler, A. Kortke, M. Peter, and W. Keusgen, “Pathloss and multipath power decay of the wideband car-to-car channel at 5.7 GHz,” in Proceedings of the IEEE 73rd Vehicular Technology Conference (VTC '11), Budapest, Hungry, May 2011. View at Scopus
  15. J. Turkka and M. Renfors, “Path loss measurements for a non-line-of-sight mobile-to-mobile environment,” in Proceedings of the 8th International Conference on Intelligent Transport System Telecommunications (ITST '08), pp. 274–278, Hilton Phuket, Thailand, October 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Mahler, P. Paschalidis, M. Wisotzki, A. Kortke, and W. Keusgen, “Evaluation of vehicular communication performance at street intersections,” in Proceedings of the IEEE 80th Vehicular Technology Conference (VTC '14), pp. 1–5, Vancouver, Canada, September 2014. View at Publisher · View at Google Scholar
  17. Z. Xu, L. Bernado, M. Gan et al., “Relaying for IEEE 802.11p at road intersection using a vehicular non-stationary channel model,” in Proceedings of the IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC '14), pp. 1–6, Vancouver, Canada, September 2014. View at Publisher · View at Google Scholar
  18. O. Onubogu, K. Ziri-Castro, D. Jayalath, K. Ansari, and H. Suzuki, “Empirical vehicle-to-vehicle pathloss modeling in highway, suburban and urban environments at 5.8 GHz,” in Proceedings of the 8th International Conference on Signal Processing and Communication Systems (ICSPCS '14), pp. 1–6, Gold Coast, Australia, December 2014. View at Publisher · View at Google Scholar
  19. L. Urquiza-Aguiar, C. Tripp-Barba, J. Estrada-Jiménez, and M. A. Igartua, “On the impact of building attenuation models in vanet simulations of urban scenarios,” Electronics, vol. 4, no. 1, pp. 37–58, 2015. View at Publisher · View at Google Scholar
  20. Y. Zang, L. Stibor, G. Orfanos, S. Guo, and H.-J. Reumerman, “An error model for inter-vehicle communications in highway scenarios at 5.9 GHz,” in Proceedings of the 2nd ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN '05), pp. 49–56, ACM, New York, NY, USA, 2005.
  21. M. Boban, T. T. V. Vinhoza, M. Ferreira, J. Barros, and O. K. Tonguz, “Impact of vehicles as obstacles in Vehicular Ad Hoc Networks,” IEEE Journal on Selected Areas in Communications, vol. 29, no. 1, pp. 15–28, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Meireles, M. Boban, P. Steenkiste, O. Tonguz, and J. Barros, “Experimental study on the impact of vehicular obstructions in VANETs,” in Proceedings of the IEEE Vehicular Networking Conference (VNC '10), pp. 338–345, IEEE, Jersey City, NJ, USA, December 2010.
  23. M. Boban, J. Barros, and O. K. Tonguz, “Geometry-based vehicle-to-vehicle channel modeling for large-scale simulation,” IEEE Transactions on Vehicular Technology, vol. 63, no. 9, pp. 4146–4164, 2014. View at Publisher · View at Google Scholar
  24. L. Cheng, B. E. Henty, D. D. Stancil, F. Bai, and P. Mudalige, “Mobile vehicle-to-vehicle narrow-band channel measurement and characterization of the 5.9 GHz Dedicated Short Range Communication (DSRC) frequency band,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1501–1516, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Abbas, Measurement based channel characterization and modeling for vehicle-to-vehicle communications [Ph.D. thesis], Lund University, 2014.
  26. J. Karedal, N. Czink, A. Paier, F. Tufvesson, and A. F. Molisch, “Path loss modeling for vehicle-to-vehicle communications,” IEEE Transactions on Vehicular Technology, vol. 60, no. 1, pp. 323–328, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Bernadó, T. Zemen, F. Tufvesson, A. F. Molisch, and C. F. Mecklenbräuker, “The (in-) validity of the WSSUS assumption in vehicular radio channels,” in Proceedings of the IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '12), pp. 1757–1762, September 2012. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Karedal, F. Tufvesson, N. Czink et al., “A geometry-based stochastic MIMO model for vehicle-to-vehicle communications,” IEEE Transactions on Wireless Communications, vol. 8, no. 7, pp. 3646–3657, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Stüber, Principles of Mobile Communication, Kluwer Academic, Dordrecht, The Netherlands, 2nd edition, 2000.
  30. A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society, Series B: Methodological, vol. 39, no. 1, pp. 1–38, 1977. View at Google Scholar · View at MathSciNet
  31. D. Vlastaras, T. Abbas, M. Nilsson, R. Whiton, M. Olback, and F. Tufvesson, “Impact of a truck as an obstacle on vehicle-to-vehicle communications in rural and highway scenarios,” in Proceedings of the IEEE 6th International Symposium on Wireless Vehicular Communications (WiVeC '14), pp. 1–6, Vancouver, Canada, September 2014. View at Publisher · View at Google Scholar
  32. H. Fernández, L. Rubio, J. Reig, V. Rodrigo-Peñarrocha, and A. Valero, “Path loss modeling for vehicular system performance and communication protocols evaluation,” Mobile Networks and Applications, vol. 18, no. 6, pp. 755–765, 2013. View at Publisher · View at Google Scholar
  33. J. Kunisch and J. Pamp, “Wideband car-to-car radio channel measurements and model at 5.9 GHz,” in Proceedings of the IEEE 68th Vehicular Technology Conference (VTC '08), pp. 1–5, Calgary, Canada, September 2008. View at Publisher · View at Google Scholar
  34. H. El-Sallabi, “Fast path loss prediction by using virtual source technique for urban microcells,” in Proceedings of the IEEE 51st Vehicular Technology Conference (VTC '00), vol. 3, pp. 2183–2187, Tokyo, Japan, 2000.
  35. T. Abbas, A. Thiel, T. Zemen, C. F. Mecklenbräuker, and F. Tufvesson, “Validation of a non-line-of-sight path-loss model for V2V communications at street intersections,” in Proceedings of the 13th International Conference on ITS Telecommunications (ITST '13), pp. 198–203, IEEE, Tampere, Finland, November 2013. View at Publisher · View at Google Scholar · View at Scopus
  36. T. Gaugel, L. Reichardt, J. Mittag, T. Zwick, and H. Hartenstein, “Accurate simulation of wireless vehicular networks based on ray tracing and physical layer simulation,” in High Performance Computing in Science and Engineering '11, pp. 619–630, Springer, Berlin, Germany, 2012. View at Publisher · View at Google Scholar
  37. M. Gudmundson, “Correlation model for shadow fading in mobile radio systems,” Electronics Letters, vol. 27, no. 23, pp. 2145–2146, 1991. View at Publisher · View at Google Scholar
  38. M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO—simulation of urban mobility: an overview,” in Proceedings of the 3rd International Conference on Advances in System Simulation (SIMUL '11), pp. 63–68, Barcelona, Spain, October 2011.
  39. T. Abbas and F. Tufvesson, “Line-of-sight obstruction analysis for vehicle-to-vehicle network simulations in a two-lane highway scenario,” International Journal of Antennas and Propagation, vol. 2013, Article ID 459323, 9 pages, 2013. View at Publisher · View at Google Scholar
  40. K. Sjöberg, Medium access control in vehicular ad hoc networks [Ph.D. thesis], Chalmers University of Technology, Goteborg, Sweden, 2013.
  41. A. Paier, The vehicular radio channel in the 5 GHz band [Ph.D. thesis], Technische Universität Wien, Vienna, Austria, 2010.
  42. IEEE Std. 802.11p-2010, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Amendment 7: Wireless Access in Vehicular Environment, IEEE Std., July 2010.