Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015 (2015), Article ID 295012, 10 pages
http://dx.doi.org/10.1155/2015/295012
Research Article

Shaped Beam Pattern Synthesis of Antenna Arrays Using Composite Differential Evolution with Eigenvector-Based Crossover Operator

Radiocommunications Laboratory, Section of Applied and Environmental Physics, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Received 6 May 2015; Revised 5 July 2015; Accepted 12 July 2015

Academic Editor: Kerim Guney

Copyright © 2015 Sotirios K. Goudos. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Isernia, F. J. Ares Pena, O. M. Bucci, M. D'Urso, J. F. Gómez, and J. A. Rodríguez, “A hybrid approach for the optimal synthesis of pencil beams through array antennas,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 11, pp. 2912–2918, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. N. G. Gómez, J. J. Rodríguez, K. L. Melde, and K. M. McNeill, “Design of low-sidelobe linear arrays with high aperture efficiency and interference nulls,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 607–610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. J. W. Hooker and R. K. Arora, “Optimal thinning levels in linear arrays,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 771–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. J. A. Ferreira and F. Ares, “Pattern synthesis of conformai arrays by the simulated annealing technique,” Electronics Letters, vol. 33, no. 14, pp. 1187–1189, 1997. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Akdagli and K. Guney, “Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm,” Microwave and Optical Technology Letters, vol. 36, no. 1, pp. 16–20, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. M. J. Buckley, “Synthesis of shaped beam antenna patterns using implicitly constrained current elements,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 2, pp. 192–197, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Fuchs, “Shaped beam synthesis of arbitrary arrays via linear programming,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 481–484, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Isernia, O. M. Bucci, and N. Fiorentino, “Shaped beam antenna synthesis problems: feasibility criteria and new strategies,” Journal of Electromagnetic Waves and Applications, vol. 12, no. 1, pp. 103–138, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. S. L. Ho and S. Yang, “Multiobjective synthesis of antenna arrays using a vector tabu search algorithm,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 947–950, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. L. Ho and S. Yang, “Multiobjective optimization of inverse problems using a vector cross entropy method,” IEEE Transactions on Magnetics, vol. 48, no. 2, pp. 247–250, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. A. A. Akdagli, K. Guney, and D. Karaboga, “Touring ant colony optimization algorithm for shaped-beam pattern synthesis of linear antenna,” Electromagnetics, vol. 26, no. 8, pp. 615–628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Storn and K. Price, “Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–359, 1997. View at Publisher · View at Google Scholar · View at Scopus
  13. M. M. Khodier and C. G. Christodoulou, “Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization,” IEEE Transactions on Antennas and Propagation, vol. 53, no. 8, pp. 2674–2679, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. D. G. Kurup, M. Himdi, and A. Rydberg, “Synthesis of uniform amplitude unequally spaced antenna arrays using the differential evolution algorithm,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 9, pp. 2210–2217, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. L. Haupt, “Thinned arrays using genetic algorithms,” IEEE Transactions on Antennas and Propagation, vol. 42, no. 7, pp. 993–999, 1994. View at Publisher · View at Google Scholar · View at Scopus
  16. R. L. Haupt, “Optimized weighting of uniform subarrays of unequal sizes,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 4, pp. 1207–1210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Mandal, A. Chatterjee, and A. K. Bhattacharjee, “Design of fully digital controlled shaped beam synthesis using differential evolution algorithm,” International Journal of Antennas and Propagation, vol. 2013, Article ID 713680, 9 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  18. S. K. Goudos, K. A. Gotsis, K. Siakavara, E. E. Vafiadis, and J. N. Sahalos, “A multi-objective approach to subarrayed linear antenna arrays design based on memetic differential evolution,” IEEE Transactions on Antennas and Propagation, vol. 61, no. 6, pp. 3042–3052, 2013. View at Publisher · View at Google Scholar · View at Scopus
  19. S. K. Goudos, V. Moysiadou, T. Samaras, K. Siakavara, and J. N. Sahalos, “Application of a comprehensive learning particle swarm optimizer to unequally spaced linear array synthesis with sidelobe level suppression and null control,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 125–129, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, “Self-adaptive differential evolution applied to real-valued antenna and microwave design problems,” IEEE Transactions on Antennas and Propagation, vol. 59, no. 4, pp. 1286–1298, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, “Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation,” IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 670–673, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite trial vector generation strategies and control parameters,” IEEE Transactions on Evolutionary Computation, vol. 15, no. 1, pp. 55–66, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Mezura-Montes, J. Velazquez-Reyes, and C. A. Coello Coello, “A comparative study of differential evolution variants for global optimization,” in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '06), pp. 485–492, Seattle, Wash, USA, 2006.
  24. S.-M. Guo and C.-C. Yang, “Enhancing differential evolution utilizing eigenvector-based crossover operator,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp. 31–49, 2015. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Storn, “Differential evolution research—trends and open questions,” Studies in Computational Intelligence, vol. 143, pp. 1–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. A. W. Iorio and X. Li, “Solving rotated multi-objective optimization problems using differential evolution,” in AI 2004: Advances in Artificial Intelligence, vol. 3339 of Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science), pp. 861–872, Springer, 2004. View at Google Scholar
  27. J. Demmel and K. Veselić, “Jacobi's method is more accurate than QR,” SIAM Journal on Matrix Analysis and Applications, vol. 13, no. 4, pp. 1204–1245, 1992. View at Publisher · View at Google Scholar
  28. M. Clerc, “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization,” in Proceedings of the 1999 Congress on Evolutionary Computation (CEC '99), pp. 1951–1957, IEEE, Washington, DC, USA, July 1999. View at Publisher · View at Google Scholar · View at Scopus