Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015, Article ID 401210, 7 pages
Research Article

Full-Wave Analysis of Stable Cross Fractal Frequency Selective Surfaces Using an Iterative Procedure Based on Wave Concept

1Federal Rural University of the Semiarid Region, DEE, RN 233, km 01, 59780-000 Caraúbas, RN, Brazil
2Federal University of Rio Grande do Norte, UFRN-CT-DCO, P.O. Box 1655, 59078-970 Natal, RN, Brazil

Received 25 March 2015; Revised 25 June 2015; Accepted 1 July 2015

Academic Editor: Xianming Qing

Copyright © 2015 V. P. Silva Neto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This work presents a full-wave analysis of stable frequency selective surfaces (FSSs) composed of periodic arrays of cross fractal patch elements. The shapes of these patch elements are defined conforming to a fractal concept, where the generator fractal geometry is successively subdivided into parts which are smaller copies of the previous ones (defined as fractal levels). The main objective of this work is to investigate the performance of FSSs with cross fractal patch element geometries including their frequency response and stability in relation to both the angle of incidence and polarization of the plane wave. The frequency response of FSS structures is obtained using the wave concept iterative procedure (WCIP). This method is based on a wave concept formulation and the boundary conditions for the FSS structure. Prototypes were manufactured and measured to verify the WCIP model accuracy. A good agreement between WCIP and measured results was observed for the proposed cross fractal FSSs. In addition, these FSSs exhibited good angular stability.