Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2015 (2015), Article ID 589459, 10 pages
http://dx.doi.org/10.1155/2015/589459
Research Article

Equilateral Triangular Dielectric Resonator Nantenna at Optical Frequencies for Energy Harvesting

1KACST Technology Innovation Center in Radio Frequency and Photonics for the e-Society (RFTONICS), King Saud University, Riyadh 11451, Saudi Arabia
2Institute of Electronics and Telecommunications of Rennes University (IETR), University of Rennes 1, 35700 Rennes, France
3Electrical Engineering Department, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Received 7 May 2015; Revised 20 August 2015; Accepted 31 August 2015

Academic Editor: Giuseppe Mazzarella

Copyright © 2015 Waleed Tariq Sethi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Balanis, Antenna Theory: Analysis and Design, John Wiley & Sons, New York, NY, USA, 2005.
  2. M. H. Alsharif, R. Nordin, and M. Ismail, “Survey of green radio communications networks: techniques and recent advances,” Journal of Computer Networks and Communications, vol. 2013, Article ID 453893, 13 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Kuwashima, K. Sekimoto, K. Kawai et al., “Neutralize CO2 emissions by product contributions,” in Proceedings of the Electronics Goes Green (ECG '12), Beijing, China, September 2012. View at Scopus
  4. G. N. Malheiros-Silveira, L. H. Gabrielli, C. J. Chang-Hasnain, and H. E. Hernandez-Figueroa, “Breakthroughs in photonics 2013: advances in nanoantennas,” IEEE Photonics Journal, vol. 6, no. 2, Article ID 0700706, 2014. View at Publisher · View at Google Scholar
  5. M. Dressel and M. Scheffler, “Verifying the Drude response,” Annalen der Physik, vol. 15, no. 7-8, pp. 535–544, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. H. Choudhury, M. I. Momtaz, and M. A. Matin, “Analytical deduction of the salient properties of a half wavelength J-pole antenna,” in Proceedings of the International Conference on Computational Intelligence and Communication Networks (C/CN '10), pp. 32–35, IEEE, Bhopal, India, November 2010. View at Publisher · View at Google Scholar
  7. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Physical Review B—Condensed Matter and Materials Physics, vol. 78, no. 19, Article ID 195111, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Rosa, K. Sun, and S. Juodkazis, “Sierpinśki fractal plasmonic nanoantennas,” Physica Status Solidi—Rapid Research Letters, vol. 5, no. 5-6, pp. 175–177, 2011. View at Publisher · View at Google Scholar
  9. L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge University Press, Cambridge, UK, 2006.
  10. D. Dregely, K. Lindfors, M. Lippitz, N. Engheta, M. Totzeck, and H. Giessen, “Imaging and steering an optical wireless nanoantenna link,” Nature Communications, vol. 5, article 4354, 2014. View at Publisher · View at Google Scholar · View at Scopus
  11. H. T. Hattori, Z. Li, D. Liu, I. D. Rukhlenko, and M. Premaratne, “Coupling of light from microdisk lasers into plasmonic nano-antennas,” Optics Express, vol. 17, no. 23, pp. 20878–20884, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Li, H. T. Hattori, L. Fu, H. H. Tan, and C. Jagadish, “Merging photonic wire lasers and nanoantennas,” Journal of Lightwave Technology, vol. 29, no. 18, Article ID 5892863, pp. 2690–2697, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. H. T. Hattori, Z. Li, and D. Liu, “Driving plasmonic nanoantennas with triangular lasers and slot waveguides,” Applied Optics, vol. 50, no. 16, pp. 2391–2400, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Richtmyer, “Dielectric resonators,” Journal of Applied Physics, vol. 10, no. 6, pp. 391–398, 1939. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Okaya and L. F. Barash, “The dielectric microwave resonator,” Proceedings of the IRE, vol. 50, no. 10, pp. 2081–2092, 1962. View at Publisher · View at Google Scholar
  16. A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, and M. Cuhaci, “Recent advances in dielectric-resonator antenna technology,” IEEE Antennas and Propagation Magazine, vol. 40, no. 3, pp. 35–48, 1998. View at Publisher · View at Google Scholar · View at Scopus
  17. K. M. Luk and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press, Hertfordshire, UK, 2002.
  18. R. K. Mongia and P. Bhartia, “Dielectric resonator antennas—a review and general design relations for resonant frequency and bandwidth,” International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering, vol. 4, no. 3, pp. 230–247, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. I. E. Hashem, N. H. Rafat, and E. A. Soliman, “Nanocrescent antenna as a transceiver for optical communication systems,” in Proceedings of the IEEE International Symposium on Electromagnetic Compatibility (EMC '14), pp. 39–45, IEEE, Raleigh, NC, USA, August 2014. View at Publisher · View at Google Scholar
  20. M. W. McAllister, S. A. Long, and G. L. Conway, “Rectangular dielectric resonator antenna,” Electronics Letters, vol. 19, no. 6, pp. 218–219, 1983. View at Publisher · View at Google Scholar · View at Scopus
  21. R. K. Mongia, A. Ittipiboon, Y. M. M. Antar, P. Bhartia, and M. Cuhaci, “Half-split cylindrical dielectric resonator antenna using slot-coupling,” IEEE Microwave and Guided Wave Letters, vol. 3, no. 2, pp. 38–39, 1993. View at Publisher · View at Google Scholar · View at Scopus
  22. A. A. Kishk, G. Zhou, and A. W. Glisson, “Analysis of dielectric resonator antennas with emphasis on hemispherical structures,” IEEE Antennas and Propagation Magazine, vol. 36, no. 2, pp. 20–30, 1994. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Y. Lo, K. W. Leung, K. M. Luk, and E. K. N. Yung, “Low profile equilateral-triangular dielectric resonator antenna of very high permittivity,” Electronics Letters, vol. 35, no. 25, pp. 2164–2166, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. A. A. Kishk, “A triangular dielectric resonator antenna excited by a coaxial probe,” Microwave and Optical Technology Letters, vol. 30, no. 5, pp. 340–341, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. L. Bailey, “A proposed new concept for a solar-energy converter,” Journal of Engineering for Power, vol. 94, no. 2, pp. 73–77, 1972. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Midrio, S. Boscolo, A. Locatelli, D. Modotto, C. De Angelis, and A.-D. Capobianco, “Flared monopole antennas for 10 μm energy harvesting,” in Proceedings of the 13th European Microwave Conference (EuMC '10), pp. 1496–1499, September 2010. View at Scopus
  27. I. Kocakarin and K. Yegin, “Glass superstrate nanoantennas for infrared energy harvesting applications,” International Journal of Antennas and Propagation, vol. 2013, Article ID 245960, 7 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  28. D. Sikdar, W. Cheng, and M. Premaratne, “Optically resonant magneto-electric cubic nanoantennas for ultra-directional light scattering,” Journal of Applied Physics, vol. 117, no. 8, Article ID 083101, 2015. View at Publisher · View at Google Scholar
  29. E. Rusak, I. Staude, M. Decker et al., “Hybrid nanoantennas for directional emission enhancement,” Applied Physics Letters, vol. 105, no. 22, Article ID 221109, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. S.-W. Qu and Z.-P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Scientific Reports, vol. 3, article 3172, 2013. View at Publisher · View at Google Scholar · View at Scopus
  31. F. J. Rodríguez-Fortuño, D. Puerto, A. Griol, L. Bellieres, J. Martí, and A. Martínez, “Sorting linearly polarized photons with a single scatterer,” Optics Letters, vol. 39, no. 6, pp. 1394–1397, 2014. View at Publisher · View at Google Scholar · View at Scopus
  32. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, vol. 6, no. 12, pp. 4370–4379, 1972. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Sinha, M. Karabiyik, C. Al-Amin, P. K. Vabbina, D. Ö. Güney, and N. Pala, “Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator,” Scientific Reports, vol. 5, article 9422, 2015. View at Publisher · View at Google Scholar
  34. P. H. Bolivar, M. Brucherseifer, J. G. Rivas et al., “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1062–1066, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Physics & Technology, vol. 41, no. 5, pp. 271–281, 2000. View at Publisher · View at Google Scholar
  36. F. Neubrech, T. Kolb, R. Lovrincic et al., “Resonances of individual metal nanowires in the infrared,” Applied Physics Letters, vol. 89, Article ID 253104, 2006. View at Publisher · View at Google Scholar
  37. R. L. Olmon and M. B. Raschke, “Antenna-load interactions at optical frequencies: impedance matching to quantum systems,” Nanotechnology, vol. 23, no. 44, Article ID 444001, 2012. View at Publisher · View at Google Scholar
  38. F. Neubrech, D. Weber, R. Lovrincic et al., “Resonances of individual lithographic gold nanowires in the infrared,” Applied Physics Letters, vol. 93, no. 16, Article ID 163105, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Optics Express, vol. 20, no. 16, pp. 18326–18335, 2012. View at Publisher · View at Google Scholar · View at Scopus