Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2016, Article ID 3743509, 12 pages
Research Article

High Performance Robust Adaptive Beamforming in the Presence of Array Imperfections

1College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, China
2Naval Academy of Armament, Beijing 100161, China

Received 18 April 2016; Accepted 8 June 2016

Academic Editor: Shih Yuan Chen

Copyright © 2016 Wenxing Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


A high performance robust beamforming scheme is proposed to combat model mismatch. Our method lies in the novel construction of interference-plus-noise (IPN) covariance matrix. The IPN covariance matrix consists of two parts. The first part is obtained by utilizing the Capon spectrum estimator integrated over a region separated from the direction of the desired signal and the second part is acquired by removing the desired signal component from the sample covariance matrix. Then a weighted summation of these two parts is utilized to reconstruct the IPN matrix. Moreover, a steering vector estimation method based on orthogonal constraint is also proposed. In this method, the presumed steering vector is corrected via orthogonal constraint under the condition where the estimation does not converge to any of the interference steering vectors. To further improve the proposed method in low signal-to-noise ratio (SNR), a hybrid method is proposed by incorporating the diagonal loading method into the IPN matrix reconstruction. Finally, various simulations are performed to demonstrate that the proposed beamformer provides strong robustness against a variety of array mismatches. The output signal-to-interference-plus-noise ratio (SINR) improvement of the beamformer due to the proposed method is significant.