Table of Contents Author Guidelines Submit a Manuscript
International Journal of Antennas and Propagation
Volume 2017 (2017), Article ID 1957572, 13 pages
https://doi.org/10.1155/2017/1957572
Research Article

Assessment Method of Multipath Mitigation Performance for GNSS Antenna with Receiver Algorithms

College of Electronic Science and Engineering, National University of Defense Technology, 109 Deya Road, Changsha, China

Correspondence should be addressed to Muzi Yuan; moc.kooltuo@nauy.izum

Received 9 March 2017; Revised 26 April 2017; Accepted 3 May 2017; Published 18 September 2017

Academic Editor: Stefania Bonafoni

Copyright © 2017 Muzi Yuan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. D. Kaplan and C. J. Hegarty, “Interference, multipath, and scintillation,” in Understanding GPS: Principles and Applications, pp. 279–294, Artech House, Boston, Mass, USA, 2nd edition, 2006. View at Google Scholar
  2. R. D. J. Van Nee, “Spread-spectrum code and carrier synchronization errors caused by multipath and interference,” IEEE Transactions on Aerospace and Electronic Systems, vol. 29, no. 4, pp. 1359–1365, 1993. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Irsigler, “Characterization of multipath phase rates in different multipath environments,” GPS Solutions, vol. 14, no. 4, pp. 305–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. V. U. Zavorotny, K. M. Larson, J. J. Braun, E. E. Small, E. D. Gutmann, and A. L. Bilich, “A physical model for GPS multipath caused by land reflections: toward bare soil moisture retrievals,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 3, no. 1, pp. 100–110, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. C. C. Chew, E. E. Small, K. M. Larson, and V. U. Zavorotny, “Effects of near-surface soil moisture on GPS SNR data: development of a retrieval algorithm for soil moisture,” IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 1, pp. 537–543, 2014. View at Publisher · View at Google Scholar · View at Scopus
  6. K. Fan and X. Ding, “Estimation of GPS carrier phase multipath signals based on site environment,” Journal of Global Positioning Systems, vol. 5, no. 1, pp. 22–28, 2006. View at Publisher · View at Google Scholar
  7. A. J. Van Dierendonck, P. Fenton, and T. Ford, “Theory and performance of narrow correlator spacing in a GPS receiver,” Navigation, Journal of the Institute of Navigation, vol. 39, no. 3, pp. 265–283, 1992. View at Google Scholar · View at Scopus
  8. B. Townsend and P. Fenton, “A practical approach to the reduction of pseudorange multipath errors in a L1 GPS receiver,” in Proceedings of the 7th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS '94), pp. 143–148, Salt Lake City, Utah, USA, September 1994.
  9. L. Garin, J. L. Rousseau et al., “Strobe and edge correlator multipath mitigation for code,” in Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS '96), pp. 657–664, Kansas City, Mo, USA, September 1996.
  10. G. A. Mcgraw and M. S. Braasch, “GNSS multipath mitigation using gated and high resolution correlator concepts,” in Proceedings of the 1999 National Technical Meeting of The Institute of Navigation, pp. 333–342, San Diego, Calif, USA, January 1999.
  11. J. Jones, P. Fenton, B. Smith et al., Theory and Performance of the Pulse Aperture Correlator, Pulse Aperture Correlator 2004.
  12. R. Hatch, R. Keegan, T. A. Stansell et al., “Leica’s code and phase multipath mitigation techniques,” in Proceedings of the 1997 National Technical Meeting of The Institute of Navigation, pp. 217–225, Santa Monica, Calif, USA, January 1997.
  13. M. Irsigler and B. Eissfeller, “Comparison of multipath mitigation techniques with consideration of future signal structures,” in Proceedings of the 16th International technical Meeting of the Satellite Division of the Institute of Navigation (ION GPS/GNSS '03), pp. 2584–2592, Portland, Ore, USA, September 2003.
  14. R. D. J. van Nee, J. Siereveld, P. C. Fenton, and B. R. Townsend, “Multipath estimating delay lock loop: approaching theoretical accuracy limits,” in Proceedings of the IEEE Position Location and Navigation Symposium, pp. 246–251, Las Vegas, Nev, USA, April 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. P. C. Fenton and J. Jones, “The theory and performance of NovAtel Inc.'s Vision Correlator,” in Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS '05), pp. 2178–2186, Long Beach, Claif, USA, September 2005. View at Scopus
  16. P. Closas, C. Fernández-Prades, and J. A. Fernández-Rubio, “A Bayesian approach to multipath mitigation in GNSS receivers,” IEEE Journal on Selected Topics in Signal Processing, vol. 3, no. 4, pp. 695–706, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Sahmoudi and M. G. Amin, “Fast Iterative Maximum-Likelihood Algorithm (FIMLA) for multipath mitigation in the next generation of GNSS receivers,” IEEE Transactions on Wireless Communications, vol. 7, no. 11, pp. 4362–4374, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. B. R. Rao, W. Kunysz, R. Fante, and K. McDonald, “Antennas and Site Considerations for Precise Applications,” in GPS/GNSS Antennas, pp. 362–370, Artech House, Boston, Mass, USA, 2013. View at Google Scholar
  19. L. Lau and P. Cross, “Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling,” Journal of Geodesy, vol. 81, no. 11, pp. 713–732, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Liu, X. Li, L. Ge, C. Rizos, and F. Wang, “Variable length LMS adaptive filter for pseudorange multipath mitigation based on SydNET stations,” Journal of Applied Geodesy, vol. 3, no. 1, pp. 35–46, 2009. View at Publisher · View at Google Scholar