Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012, Article ID 415170, 13 pages
http://dx.doi.org/10.1155/2012/415170
Review Article

Mechanisms of Resistance to Trastuzumab and Novel Therapeutic Strategies in HER2-Positive Breast Cancer

1Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore 119228
2Cancer Science Institute, National University of Singapore, Singapore 117599

Received 14 September 2011; Accepted 3 February 2012

Academic Editor: Mary Cianfrocca

Copyright © 2012 Andrea L. A. Wong and Soo-Chin Lee. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire, “Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene,” Science, vol. 235, no. 4785, pp. 177–182, 1987. View at Google Scholar · View at Scopus
  2. D. J. Slamon, B. Leyland-Jones, S. Shak et al., “Use of chemotherapy plus a monoclonal antibody against her2 for metastatic breast cancer that overexpresses HER2,” New England Journal of Medicine, vol. 344, no. 11, pp. 783–792, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. E. H. Romond, E. A. Perez, J. Bryant et al., “Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer,” New England Journal of Medicine, vol. 353, no. 16, pp. 1673–1684, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Arribas, J. Baselga, K. Pedersen, and J. L. Parra-Palau, “p95HER2 and breast cancer,” Cancer Research, vol. 71, no. 5, pp. 1515–1519, 2011. View at Publisher · View at Google Scholar
  5. N. L. Spector and K. L. Blackwell, “Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer,” Journal of Clinical Oncology, vol. 27, no. 34, pp. 5838–5847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Baselga and S. M. Swain, “Novel anticancer targets: revisiting ERBB2 and discovering ERBB3,” Nature Reviews Cancer, vol. 9, no. 7, pp. 463–475, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Clynes, T. L. Towers, L. G. Presta, and J. V. Ravetch, “Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets,” Nature Medicine, vol. 6, no. 4, pp. 443–446, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Gennari, S. Menard, F. Fagnoni et al., “Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2,” Clinical Cancer Research, vol. 10, no. 17, pp. 5650–5655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. M. A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, and J. Baselga, “Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells,” Cancer Research, vol. 61, no. 12, pp. 4744–4749, 2001. View at Google Scholar · View at Scopus
  10. M. N. Fornier, A. D. Seidman, M. K. Schwartz et al., “Serum HER2 extracellular domain in metastatic breast cancer patients treated with weekly trastuzumab and paclitaxel: association with HER2 status by immunohistochemistry and fluorescence in situ hybridization and with response rate,” Annals of Oncology, vol. 16, no. 2, pp. 234–239, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. W. J. Kostler, B. Schwab, C. F. Singer et al., “Monitoring of Serum Her-2/neu Predicts Response and Progression-Free Survival to Trastuzumab-Based Treatment in Patients with Metastatic Breast Cancer,” Clinical Cancer Research, vol. 10, no. 5, pp. 1618–1624, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. F. M. Yakes, W. Chinratanalab, C. A. Ritter, W. King, S. Seelig, and C. L. Arteaga, “Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action,” Cancer Research, vol. 62, no. 14, pp. 4132–4141, 2002. View at Google Scholar · View at Scopus
  13. Y. Nagata, K. H. Lan, X. Zhou et al., “PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients,” Cancer Cell, vol. 6, no. 2, pp. 117–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. X. F. Le, F. X. Claret, A. Lammayot et al., “The role of cyclin-dependent kinase inhibitor p27Kip1 in anti-HER2 antibody-induced G1 cell cycle arrest and tumor growth inhibition,” Journal of Biological Chemistry, vol. 278, no. 26, pp. 23441–23450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. H. A. Lane, A. B. Motoyama, I. Beuvink, and N. E. Hynes, “Modulation of p27/Cdk2 complex formation through 4D5-mediated inhibition of HER2 receptor signaling,” Annals of Oncology, vol. 12, no. 1, pp. S21–S22, 2001. View at Google Scholar · View at Scopus
  16. L. Yen, X. L. You, A. E. Al Moustafa et al., “Heregulin selectively upregulates vascular endothelial growth factor secretion in cancer cells and stimulates angiogenesis,” Oncogene, vol. 19, no. 31, pp. 3460–3469, 2000. View at Google Scholar · View at Scopus
  17. Y. Izumi, L. Xu, E. Di Tomaso, D. Fukumura, and R. K. Jain, “Herceptin acts as an anti-angiogenic cocktail,” Nature, vol. 416, no. 6878, pp. 279–280, 2002. View at Google Scholar · View at Scopus
  18. K. S. Klos, X. Zhou, S. Lee et al., “Combined trastuzumab and paclitaxel treatment better inhibits ErbB-2-mediated angiogenesis in breast carcinoma through a more effective inhibition of Akt than either treatment alone,” Cancer, vol. 98, no. 7, pp. 1377–1385, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Pedersen, P. D. Angelini, S. Laos et al., “A naturally occurring HER2 carboxy-terminal fragment promotes mammary tumor growth and metastasis,” Molecular and Cellular Biology, vol. 29, no. 12, pp. 3319–3331, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Sperinde, X. Jin, J. Banerjee et al., “Quantitation of p95HER2 in paraffin sections by using a p95-specific antibody and correlation with outcome in a cohort of trastuzumab-treated breast cancer patients,” Clinical Cancer Research, vol. 16, no. 16, pp. 4226–4235, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Serra, B. Markman, M. Scaltriti et al., “NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations,” Cancer Research, vol. 68, no. 19, pp. 8022–8030, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Berns, H. M. Horlings, B. T. Hennessy et al., “A Functional Genetic Approach Identifies the PI3K Pathway as a Major Determinant of Trastuzumab Resistance in Breast Cancer,” Cancer Cell, vol. 12, no. 4, pp. 395–402, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Razis, M. Bobos, V. Kotoula et al., “Evaluation of the association of PIK3CA mutations and PTEN loss with efficacy of trastuzumab therapy in metastatic breast cancer,” Breast Cancer Research and Treatment, vol. 128, no. 2, pp. 447–456, 2011. View at Publisher · View at Google Scholar
  24. M. Pegram, Challenges in HER2-Positive Breast Cancer, ASCO Educational Book, Alexandria, Va, USA, 2011.
  25. Y. Lu, X. Zi, Y. Zhao, D. Mascarenhas, and M. Pollak, “Insulin-like growth factor-I receptor signaling and resistance to transtuzumab (Herceptin),” Journal of the National Cancer Institute, vol. 93, no. 24, pp. 1852–1857, 2001. View at Google Scholar · View at Scopus
  26. N. V. Sergina, M. Rausch, D. Wang et al., “Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3,” Nature, vol. 445, no. 7126, pp. 437–441, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. S. T. Lee-Hoeflich, L. Crocker, E. Yao et al., “A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy,” Cancer Research, vol. 68, no. 14, pp. 5878–5887, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Nagy, E. Friedländer, M. Tanner et al., “Decreased accessibility and lack of activation of ErbB2 in JIMT-1, a herceptin-resistant, MUC4-expressing cancer cell line,” Cancer Research, vol. 65, no. 2, pp. 473–482, 2005. View at Google Scholar · View at Scopus
  29. S. P. Fessler, M. T. Wotkowicz, S. K. Mahanta, and C. Bamdad, “MUC1 is a determinant of trastuzumab (Herceptin) resistance in breast cancer cells,” Breast Cancer Research and Treatment, vol. 118, no. 1, pp. 113–124, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Barok, J. Isola, Z. Pályi-Krekk et al., “Trastuzumab causes antibody-dependent cellular cytotoxicity-mediated growth inhibition of submacroscopic JIMT-1 breast cancer xenografts despite intrinsic drug resistance,” Molecular Cancer Therapeutics, vol. 6, no. 7, pp. 2065–2072, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. R. J. Pietras, M. D. Pegram, R. S. Finn, D. A. Maneval, and D. J. Slamon, “Remission of human breast cancer xenografts on therapy with humanized monoclonal antibody to HER-2 receptor and DNA-reactive drugs,” Oncogene, vol. 17, no. 17, pp. 2235–2249, 1998. View at Google Scholar · View at Scopus
  32. K. A. Gelmon, J. Mackey, S. Verma et al., “Use of trastuzumab beyond disease progression: observations from a retrospective review of case histories,” Clinical Breast Cancer, vol. 5, no. 1, pp. 52–58, 2004. View at Google Scholar · View at Scopus
  33. D. Tripathy, D. J. Slamon, M. Cobleigh et al., “Safety of treatment of metastatic breast cancer with trastuzumab beyond disease progression,” Journal of Clinical Oncology, vol. 22, no. 6, pp. 1063–1070, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. G. von Minckwitz, A. Du Bois, M. Schmidt et al., “Trastuzumab beyond progression in human epidermal growth factor receptor 2-positive advanced breast cancer: a German Breast Group 26/Breast International Group 03-05 study,” Journal of Clinical Oncology, vol. 27, no. 12, pp. 1999–2006, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Cancello, E. Montagna, D. D'Agostino et al., “Continuing trastuzumab beyond disease progression: outcomes analysis in patients with metastatic breast cancer,” Breast Cancer Research, vol. 10, no. 4, 2008, Abstract R60. View at Publisher · View at Google Scholar · View at Scopus
  36. W. Xia, R. J. Mullin, B. R. Keith et al., “Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways,” Oncogene, vol. 21, no. 41, pp. 6255–6263, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Scaltriti, S. Chandarlapaty, L. Prudkin et al., “Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor receptor 2-positive breast tumors coexpressing the truncated p95HER2 receptor,” Clinical Cancer Research, vol. 16, no. 9, pp. 2688–2695, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Scaltriti, F. Rojo, A. Ocaña et al., “Expression of p95HER2, a truncated form of the HER2 receptor, and response to Anti-HER2 therapies in breast cancer,” Journal of the National Cancer Institute, vol. 99, no. 8, pp. 628–638, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. C. E. Geyer, J. Forster, D. Lindquist et al., “Lapatinib plus capecitabine for HER2-positive advanced breast cancer,” New England Journal of Medicine, vol. 355, no. 26, pp. 2733–2743, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. N. U. Lin, V. Diéras, D. Paul et al., “Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer,” Clinical Cancer Research, vol. 15, no. 4, pp. 1452–1459, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Scaltriti, C. Verma, M. Guzman et al., “Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity,” Oncogene, vol. 28, no. 6, pp. 803–814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. K. L. Blackwell, H. J. Burstein, A. M. Storniolo et al., “Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1124–1130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Baselga, I. Bradbury, H. Eidtmann, S. A. C. di Cosimo, E. de Azambuja, and H. Gomez, “First results of the NeoALTTO trial (BIG 01-06 / EGF 106903): a phase III, randomized, open label, neoadjuvant study of lapatinib, trastuzumab, and their combination plus paclitaxel in women with HER2-positive primary breast cancer,” in Proceedings of the San Antonio Breast Cancer Symposium, 2010, Abstract S3-3.
  44. W. Scheuer, T. Friess, H. Burtscher, B. Bossenmaier, J. Endl, and M. Hasmann, “Strongly enhanced antitumor activity of trastuzumab and pertuzumab combination treatment on HER2-positive human xenograft tumor models,” Cancer Research, vol. 69, no. 24, pp. 9330–9336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. “ERRBB2 dimerization inhibitor meets endpoint in breast cancer trial,” Nature Reviews Drug Discovery, vol. 10, p. 648, 2011. View at Publisher · View at Google Scholar
  46. J. Baselga, K. A. Gelmon, S. Verma et al., “Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1138–1144, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. J. Cortés, J. Baselga, T. Petrella, and R. Abbas, “Pertuzumab monotherapy following trastuzumab-based treatment: activity and tolerability in patients with advanced HER2- positive breast cancer,” Journal of Clinical Oncology, vol. 27, supplement 15s, 2009. View at Google Scholar
  48. L. Gianni, T. Pienkowski, Y.-H. Im et al., “Neoadjuvant pertuzumab (P) and trastuzumab (H): antitumor and safety analysis of a randomized phase II study (‘NeoSphere’),” in Proceedings of the San Antonio Breast Cancer Symposium, 2010, Abstract S3-2.
  49. C. D. Austin, A. M. De Mazière, P. I. Pisacane et al., “Endocytosis and sorting of ErbB2 and the site of action of cancer therapeutics trastuzumab and geldanamycin,” Molecular Biology of the Cell, vol. 15, no. 12, pp. 5268–5282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. G. D. L. Phillips, G. Li, D. L. Dugger et al., “Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate,” Cancer Research, vol. 68, no. 22, pp. 9280–9290, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. I. E. Krop, M. Beeram, S. Modi et al., “Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 16, pp. 2698–2704, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Vukelja, H. Rugo, C. Vogel, R. Borson, E. Tan-Chiu, and M. Birkner, “A phase II study of trastuzumab-DM1, a first-in-class HER2 antibody-drug conjugate, in patients with HER2+ metastatic breast cancer,” Cancer Research, vol. 69, supplement 2, 2009, Abstract 33. View at Google Scholar
  53. E. Perez, L. Dirix, J. D. Kocsis, T. A. Gajria, and H. P. King, “Efficacy and safety of trastuzumab-DM1 versus trastuzumab and docetaxel in HER2-positive metastatic breast cancer with no prior chemotherapy for metastatic disease,” Annals of Oncology, supplement 8, 21, viii 2. View at Google Scholar
  54. C. T. Fields, L. M. Crocker, M. X. Sliwkowski, and D. Anderson, “Dual Targeting of HER2: enhanced anti-tumour efficacy of trastuzumab-DM1 combined with pertuzumab,” Proceedings of the American Association for Cancer Research, vol. 51, no. 1360, 2010, Abstract 5607. View at Google Scholar
  55. K. Miller, L. Gianni, F. Andre, and V. Dieras, “A phase Ib/II trial of trastuzumab-DM1 (T-DM1) with pertuzumab (P) for women with HER2-positive, locally advanced or metastatic breast cancer (BC) who were previously treated with trastuzumab (T),” Journal of Clinical Oncology, vol. 28, supplement 15s, 2010, Abstract 1012. View at Google Scholar
  56. K. L. Jones and A. U. Buzdar, “Evolving novel anti-HER2 strategies,” The Lancet Oncology, vol. 10, no. 12, pp. 1179–1187, 2009. View at Publisher · View at Google Scholar · View at Scopus
  57. S. K. Rabindran, C. M. Discafani, E. C. Rosfjord et al., “Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase,” Cancer Research, vol. 64, no. 11, pp. 3958–3965, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. H. J. Burstein, Y. Sun, L. Y. Dirix et al., “Neratinib, an irreversible ErbB receptor tyrosine kinase inhibitor, in patients with advanced ErbB2-positive breast cancer,” Journal of Clinical Oncology, vol. 28, no. 8, pp. 1301–1307, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. H. J. Burstein, A. M. Storniolo, S. Franco et al., “A phase II study of lapatinib monotherapy in chemotherapy-refractory HER2-positive and HER2-negative advanced or metastatic breast cancer,” Annals of Oncology, vol. 19, no. 6, pp. 1068–1074, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. R. Swaby, K. Blackwell, Z. Jiang, and Y. Sun, “Neratinib in combination with trastuzumab for the treatment of advanced breast cancer: A phase I/II study,” Journal of Clinical Oncology, vol. 27, supplement 15s, 2009, Abstract1004. View at Google Scholar
  61. F. A. L. M. Eskens, C. H. Mom, A. S. T. Planting et al., “A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours,” British Journal of Cancer, vol. 98, no. 1, pp. 80–85, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. T. Hickish, D. Wheatley, and N. Lin, “Use of BIBW 2992, a novel irreversible EGFR/HER1 and HER2 tyrosine kinase inhibitor to treat patients with HER2-positive metastatic breast cancer after failure of treatment with trastuzumab,” Cancer Research, vol. 69, supplement 24, 2009, Abstract 5060. View at Google Scholar
  63. American Association for Cancer Research Annual Meeting 2011, http://www.aacr.org.
  64. P. Lee, D. Anderson, A. Avrutskaya, and D. Gajria, “In Vivo activity of ARRY-334543, a potent, small molecule inhibitor of EGFR/ErbB-2 in combination with trastuzumab and docetaxel,” in Proceedings of the San Antonio Breast Cancer Symposium, 2008, Abstract 2150.
  65. A. D. Basso, D. B. Solit, P. N. Munster, and N. Rosen, “Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2,” Oncogene, vol. 21, no. 8, pp. 1159–1166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. S. Chandarlapaty, M. Scaltriti, P. Angelini et al., “Inhibitors of HSP90 block p95-HER2 signaling in Trastuzumab-resistant tumors and suppress their growth,” Oncogene, vol. 29, no. 3, pp. 325–334, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. S. Modi, A. Stopeck, H. Linden et al., “HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab,” Clinical Cancer Research, vol. 17, no. 15, pp. 5132–5139, 2011. View at Google Scholar
  68. S. Modi, C. A. Saura, C. A. Henderson, and D. Anderson, “Efficacy and safety of retaspimycin hydrochloride (IPI-504) in combination with trastuzumab in patients (pts) with pretreated, locally advanced or metastatic HER2-positive breast cancer,” Journal of Clinical Oncology, vol. 29, 2011, Abstract 590. View at Google Scholar
  69. P. J. A. Eichhorn, M. Gili, M. Scaltriti et al., “Phosphatidylinositol 3-kinase hyperactivation results in lapatinib resistance that is reversed by the mTOR/phosphatidylinositol 3-kinase inhibitor NVP-BEZ235,” Cancer Research, vol. 68, no. 22, pp. 9221–9230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. P. K. Morrow, G. M. Wulf, J. Ensor et al., “Phase I/II study of trastuzumab in combination with everolimus (RAD001) in patients with HER2-overexpressing metastatic breast cancer who progressed on trastuzumab-based therapy,” Journal of Clinical Oncology, vol. 29, no. 23, pp. 3126–3132, 2011. View at Publisher · View at Google Scholar
  71. F. Dalenc, M. Campone, P. Hupperets, and D. Gajria, “Everolimus in combination with weekly paclitaxel and trastuzumab in patients (pts) with HER2-overexpressing metastatic breast cancer (MBC) with prior resistance to trastuzumab and taxanes: a multicenter phase II clinical trial,” Journal of Clinical Oncology, vol. 28, supplement 15s, 2010, Abstract 1013. View at Google Scholar
  72. D. Gajria, T. A. King, and H. Pannu, “Combined inhibition of mTORC1 with temsirolimus and HER2 with neratinib: a phase I study in patients with metastatic HER2-amplified breast cancer,” Journal of Clinical Oncology, vol. 29, 2011, Abstract 574. View at Google Scholar
  73. J. Rodon, J. Infante, H. Burris, and D. Anderson, “A dose-escalation study with a special drug delivery system (SDS) of BEZ235, a novel dual PI3K/mTOR inhibitor, in patients with metastatic/advanced solid tumors,” in Proceedings of the San Antonio Breast Cancer Symposium, 2010, Abstract P6-15-07.
  74. T. W. Miller, B. N. Rexer, J. T. Garrett, and C. L. Arteaga, “Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer,” Breast Cancer Research, vol. 13, p. 224, 2011. View at Publisher · View at Google Scholar
  75. G. E. Konecny, Y. G. Meng, M. Untch et al., “Association between HER-2/neu and Vascular Endothelial Growth Factor Expression Predicts Clinical Outcome in Primary Breast Cancer Patients,” Clinical Cancer Research, vol. 10, no. 5, pp. 1706–1716, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Pegram, D. Chan, R. Dichmann, and D. Anderson, “Phase II combined biological therapy targeting the HER2 proto-oncogene and the vascular endothelial growth factor using trastuzumab (T) and bevacizumab (B) as first line treatment of HER2-amplified breast cancer,” Breast Cancer Research, vol. 100, p. 3039, 2006. View at Google Scholar
  77. A. Chan, D. W. Miles, and X. Pivot, “Bevacizumab in combination with taxanes for the first-line treatment of metastatic breast cancer,” Annals of Oncology, vol. 21, no. 12, pp. 2305–2315, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. D. Slamon, H. L. Gomez, F. F. Kabbinavar, O. Amit, and M. Richie, “Randomized study of pazopanib + lapatinib vs. lapatinib alone in patients with HER2- positive advanced or metastatic breast cancer,” Journal of Clinical Oncology, vol. 26, supplement 20, 2008, Abstract 1016. View at Google Scholar
  79. B. D. Cohen, D. A. Baker, C. Soderstrom et al., “Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751,871,” Clinical Cancer Research, vol. 11, no. 5, pp. 2063–2073, 2005. View at Publisher · View at Google Scholar · View at Scopus
  80. C. Garcia-Echeverria, M. A. Pearson, A. Marti et al., “In vivo antitumor activity of NVP-AEW541-a novel, potent, and selective inhibitor of the IGF-IR kinase,” Cancer Cell, vol. 5, no. 3, pp. 231–239, 2004. View at Publisher · View at Google Scholar · View at Scopus
  81. M. J. Higgins, N. Y. Gabrail, K. Miller, and D. Anderson, “A phase I/II study of MM-111, a novel bispecific antibody that targets the ErB2/ErB3 heterodimer, in combination with trastuzumab in advanced refractory HER2-positive breast cancer,” Journal of Clinical Oncology, vol. 29, 2011, Abstract 119. View at Google Scholar
  82. J. L. Parra-Palau, K. Pedersen, V. Peg et al., “A major role of p95/611-CTF, a carboxy-terminal fragment of HER2, in the down-modulation of the estrogen receptor in HER2-positive breast cancers,” Cancer Research, vol. 70, no. 21, pp. 8537–8546, 2010. View at Publisher · View at Google Scholar · View at Scopus