Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012, Article ID 785947, 7 pages
http://dx.doi.org/10.1155/2012/785947
Review Article

The Value of Large Sections in Surgical Pathology

Department of Biomedical and Neuro Motor Sciences, Section of Anatomic Pathology, University of Bologna, “M. Malpighi”, at Bellaria Hospital, Via Altura 3, 40139 Bologna, Italy

Received 3 September 2012; Accepted 10 October 2012

Academic Editor: Tibor Tot

Copyright © 2012 Maria P. Foschini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. L. Cheatle, “Early recognition of cancer of the breast,” The British Medical Journal, vol. 1, pp. 1205–1210, 1906. View at Google Scholar
  2. G. L. Cheatle, “The Relation between Ducts and Acini to Cysts and Cancer of the Breast 21,” Journal of the Royal Society of Medicine, vol. 7, pp. 241–244, 1914. View at Google Scholar
  3. G. L. Cheatle, “Cancer of the breast: treatment of the proemial breast,” British Medical Journal, vol. 1, no. 3205, pp. 869–871, 1922. View at Google Scholar
  4. H. Ingleby and C. Holly, “A method for the preparation of serial slices of the breast,” Bulletin of the International Association of Medical Museums, vol. 19, pp. 93–96, 1939. View at Google Scholar
  5. R. G. Marcum and S. R. Wellings, “Subgross pathology of the human breast: method and initial observations,” Journal of the National Cancer Institute, vol. 42, no. 1, pp. 115–121, 1969. View at Google Scholar · View at Scopus
  6. H. S. Gallager and J. E. Martin, “Early phases in the development of breast cancer,” Cancer, vol. 24, no. 6, pp. 1170–1178, 1969. View at Google Scholar · View at Scopus
  7. H. S. Gallager and J. E. Martin, “The study of mammary carcinoma by mammography and whole organ sectioning. Early observations,” Cancer, vol. 23, no. 4, pp. 855–873, 1969. View at Google Scholar · View at Scopus
  8. S. R. Wellings and H. M. Jensen, “On the origin and progression of ductal carcinoma in the human breast,” Journal of the National Cancer Institute, vol. 50, no. 5, pp. 1111–1116, 1973. View at Google Scholar · View at Scopus
  9. A. G. Parks, “The microanatomy of the breasts,” Annals of The Royal College of Surgeons of England, vol. 24, pp. 235–251, 1959. View at Google Scholar
  10. Y. Tanaka and K. Oota, “A stereomicroscopic study of the mastopathic human breast I. Three-dimensional structures of abnormal duct evolution and their histologic entity,” Virchows Archiv Abteilung A Pathologische Anatomie, vol. 349, no. 3, pp. 195–214, 1970. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Tanaka and K. Oota, “A stereomicroscopic study of the mastopathic human breast II. Peripheral type of duct evolution and its relation to cystic disease,” Virchows Archiv Abteilung A Pathologische Anatomie, vol. 349, no. 3, pp. 215–228, 1970. View at Publisher · View at Google Scholar · View at Scopus
  12. J. J. Going and D. F. Moffat, “Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions,” Journal of Pathology, vol. 203, no. 1, pp. 538–544, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Tot, “DCIS, cytokeratins, and the theory of the sick lobe,” Virchows Archiv, vol. 447, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. L. Egan, “Multicentric breast carcinomas: clinical-radiographic-pathologic whole organ studies and 10-year survival,” Cancer, vol. 49, no. 6, pp. 1123–1130, 1982. View at Google Scholar · View at Scopus
  15. R. Sarnelli and F. Squartini, “Multicentricity in breast cancer: a submacroscopic study,” Pathology Annual, vol. 21, pp. 143–158, 1986. View at Google Scholar · View at Scopus
  16. T. Tot, “Clinical relevance of the distribution of the lesions in 500 consecutive breast cancer cases documented in large-format histologic sections,” Cancer, vol. 110, no. 11, pp. 2551–2560, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Tot, M. Gere, G. Pekár et al., “Breast cancer multifocality, disease extent, and survival,” Human Pathology, vol. 42, no. 11, pp. 1761–1769, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Faverly, R. Holland, and L. Burgers, “An original stereomicroscopic analysis of the mammary glandular tree,” Virchows Archiv, vol. 421, no. 2, pp. 115–119, 1992. View at Google Scholar · View at Scopus
  19. R. Holland and D. R. G. Faverly, “The local distribution of ductal carcinoma in situ of the breast: whole-organ studies,” in Ductal Carcinoma in Situ of the Breast, M. J. Silverstein, A. Recht, and M. D. Lagios, Eds., Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2002. View at Google Scholar
  20. D. R. G. Faverly, L. Burgers, P. Bult, and R. Holland, “Three dimensional imaging of mammary ductal carcinoma in situ: clinical implications,” Seminars in Diagnostic Pathology, vol. 11, no. 3, pp. 193–198, 1994. View at Google Scholar · View at Scopus
  21. M. P. Foschini, F. Flamminio, R. Miglio et al., “The impact of large sections on the study of in situ and invasive duct carcinoma of the breast,” Human Pathology, vol. 38, no. 12, pp. 1736–1743, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Tot, L. Tabár, and P. B. Dean, “The pressing need for better histologic-mammographic correlation of the many variations in normal breast anatomy,” Virchows Archiv, vol. 437, no. 4, pp. 338–344, 2000. View at Google Scholar · View at Scopus
  23. T. Tot, L. Tabár, and P. B. Dean, Pratical Breast Pathology, Thieme, New York, NY, USA, 2002.
  24. T. Tot and L. Tabár, “The role of radiological-pathological correlation in diagnosing early breast cancer: the pathologist's perspective,” Virchows Archiv, vol. 458, no. 2, pp. 125–131, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Tot, “Cost-benefit analysis of using large-format histology sections in routine diagnostic breast care,” Breast, vol. 19, no. 4, pp. 284–288, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. F. L. Tucker, “Imaging-assisted large format breast pathology: program rationale and development in a non-profit health system in the United States,” International Journal of Breast Cancer. In press.
  27. M. P. Foschini, T. Tot, and V. Eusebi, “Large-section, (Macrosection) histologic slides,” in Ductal Carcinoma in situ of the Breast, M. J. Silverstein, Ed., pp. 249–254, Lippincott, Philadelphia, Pa, USA, 2nd edition, 2002. View at Google Scholar
  28. R. Montironi, B. A. Lopez, R. Mazzucchelli, L. Cheng, and M. Scarpelli, “. Handling of radical prostatectomy specimens: total embedding with large-format histology,” International Journal of Breast Cancer, vol. 2012, Article ID 932784, 6 pages, 2012. View at Publisher · View at Google Scholar
  29. M. P. Foschini, A. Righi, M. C. Cucchi et al., “The impact of large sections and 3D technique on the study of lobular in situ and invasive carcinoma of the breast,” Virchows Archiv, vol. 448, no. 3, pp. 256–261, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. M. P. Foschini, L. Morandi, E. Leonardi et al., “Genetic clonal mapping of in situ and invasive ductal carcinoma supports the field cancerization phenomenon in the breast,” Human Pathology. In press.
  31. M. R. Foster, L. Harris, and K. W. Biesemier, “Large format histology may aid in the detection of unsuspected pathologic findings of potential clinical significance: a prospective multiyear single institution study,” International Journal of Breast Cancer, vol. 2012, Article ID 532547, 3 pages, 2012. View at Publisher · View at Google Scholar
  32. P. A. Jackson, W. Merchant, C. J. McCormick, and M. G. Cook, “A comparison of large block macrosectioning and conventional techniques in breast pathology,” Virchows Archiv, vol. 425, no. 3, pp. 243–248, 1994. View at Google Scholar · View at Scopus
  33. S. Lega, D. Malvi, F. Flamminio, A. Righi, M. P. Foschini, and V. Eusebi, “Applicazioni delle macrosezioni nella diagnostica del carcinoma mammario,” Pathologica, vol. 98, no. 5, p. 571, 2006. View at Google Scholar
  34. C. Baldovini and M. P. Foschini, “Multifocality of breast cancer,” in Proceedings of the 27th Congress of the Adriatic Society of Pathology, June 2012.
  35. S. E. Pinder, E. Provenzano, H. Earl, and I. O. Ellis, “Laboratory handling and histology reporting of breast specimens from patients who have received neoadjuvant chemotherapy,” Histopathology, vol. 50, no. 4, pp. 409–417, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. H. C. Sweet, J. P. Wyatt, and P. W. Kinsella, “Correlation of lung macrosections with pulmonary function in emphysema,” The American Journal of Medicine, vol. 29, no. 2, pp. 277–281, 1960. View at Google Scholar · View at Scopus
  37. M. Dahele, D. Hwang, C. Peressotti et al., “Developing a methodology for three-dimensional correlation of PET-CT images and whole-mount histopathology in non-small-cell lung cancer,” Current Oncology, vol. 15, no. 5, pp. 62–69, 2008. View at Google Scholar · View at Scopus
  38. D. Present, F. Bertoni, T. Hudson, and W. F. Enneking, “The correlation between the radiologic staging studies and histopathologic findings in aggressive Stage 3 giant cell tumor of bone,” Cancer, vol. 57, no. 2, pp. 237–244, 1986. View at Google Scholar · View at Scopus
  39. T. M. Hudson, F. S. Chew, and B. J. Manaster, “Radionuclide bone scanning of medullary chondrosarcoma,” American Journal of Roentgenology, vol. 139, no. 6, pp. 1071–1076, 1982. View at Google Scholar · View at Scopus
  40. T. M. Hudson, F. S. Chew, and B. J. Manaster, “Scintigraphy of benign exostoses and exostotic chondrosarcomas,” American Journal of Roentgenology, vol. 140, no. 3, pp. 581–586, 1983. View at Google Scholar · View at Scopus
  41. F. Bertoni, D. Present, T. Hudson, and W. F. Enneking, “The meaning of radiolucencies in parosteal osteosarcoma,” Journal of Bone and Joint Surgery A, vol. 67, no. 6, pp. 901–910, 1985. View at Google Scholar · View at Scopus
  42. F. Declau, B. Appel, and J. Marquet, “Morphogenesis of the inner ear. Correlation between CT- findings and macrosections,” Acta Oto-Rhino-Laryngologica Belgica, vol. 39, no. 4, pp. 653–670, 1985. View at Google Scholar · View at Scopus
  43. A. R. Crossman and D. Neary, Neuroanatomy, Elsevier, 3rd edition, 2005.
  44. O. W. Howell, C. A. Reeves, R. Nicholas et al., “Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis,” Brain, vol. 134, part 9, pp. 2755–2771, 2011. View at Google Scholar
  45. P. J. Slootweg and J. A. M. de Grot, Surgical Pathological Anatomy oh Head and Neck Specimens, Springer, 1999.
  46. T. Tot, Colorectal Tumors: Atlas of Large Section Histopathology, Thieme Medical Publishers, 2005.
  47. M. P. Foschini, L. Gabrielli, T. Dorji et al., “Vascular anastomoses in dichorionic diamniotic-fused placentas,” International Journal of Gynecological Pathology, vol. 22, no. 4, pp. 359–361, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Leone, S. Longhi, C. C. Quarta et al., “New pathological insights into cardiac amyloidosis: implications for non-invasive diagnosis,” Amyloid, vol. 19, no. 2, pp. 99–105, 2012. View at Publisher · View at Google Scholar
  49. R. Mazzucchelli, M. Scarpelli, A. Lopez-Beltran, L. Cheng, and R. Montironi, “Macrocryosectioning and complete sampling of the prostate in a potential multiorgan donor candidate,” Journal of Clinical Pathology, vol. 60, no. 8, pp. 951–952, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Patriarca, A. Comi, G. Gazzano, P. Colombo, B. Campo, and G. Coggi, “Macrocryosectioning of the prostate: a simple technique,” Journal of Clinical Pathology, vol. 54, no. 3, pp. 236–237, 2001. View at Publisher · View at Google Scholar · View at Scopus