Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2012, Article ID 819578, 8 pages
http://dx.doi.org/10.1155/2012/819578
Clinical Study

Antibacterial-Coated Suture in Reducing Surgical Site Infection in Breast Surgery: A Prospective Study

Service de Gynécologie-Obtétrique, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, CancerEst, Université Pierre et Marie Curie-Paris 6 75020 Paris, France

Received 12 August 2012; Revised 11 November 2012; Accepted 13 November 2012

Academic Editor: Ian S. Fentiman

Copyright © 2012 Enora Laas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. F. Vitug and L. A. Newman, “Complications in breast surgery,” Surgical Clinics of North America, vol. 87, no. 2, pp. 431–451, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. K. Kuroi, K. Shimozuma, T. Taguchi et al., “Evidence-based risk factors for seroma formation in breast surgery,” Japanese Journal of Clinical Oncology, vol. 36, no. 4, pp. 197–206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Rouzier, L. Pusztai, S. Delaloge et al., “Nomograms to predict pathologic complete response and metastasis-free survival after preoperative chemotherapy for breast cancer,” Journal of Clinical Oncology, vol. 23, no. 33, pp. 8331–8339, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Nicolas, Y. Yazdan, C. Marie-Pierre et al., “Prevention of surgical site infection after breast cancer surgery by targeted prophylaxis antibiotic in patients at high risk of surgical site infection,” Journal of Surgical Oncology, vol. 96, no. 2, pp. 124–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Vilar-Compte, S. Rosales, N. Hernandez-Mello, E. Maafs, and P. Volkow, “Surveillance, control, and prevention of surgical site infections in breast cancer surgery: a 5-year experience,” American Journal of Infection Control, vol. 37, no. 8, pp. 674–679, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Blomstedt and B. Osterberg, “Suture materials and wound infection. An experimental study,” Acta Chirurgica Scandinavica, vol. 144, no. 5, pp. 269–274, 1978. View at Google Scholar · View at Scopus
  7. B. Blomstedt, B. Osterberg, and A. Bergstrand, “Suture material and bacterial transport. An experimental study,” Acta Chirurgica Scandinavica, vol. 143, no. 2, pp. 71–73, 1977. View at Google Scholar · View at Scopus
  8. B. Osterberg and B. Blomstedt, “Effect of suture materials on bacterial survival in infected wounds. An experimental study,” Acta Chirurgica Scandinavica, vol. 145, no. 7, pp. 431–434, 1979. View at Google Scholar · View at Scopus
  9. S. D. Elek and P. E. Conen, “The virulence of Staphylococcus pyogenes for man, a study of the problems of wound infection,” British Journal of Experimental Pathology, vol. 38, no. 6, pp. 573–586, 1957. View at Google Scholar
  10. T. A. Barbolt, “Chemistry and safety of triclosan, and its use as an antimicrobial coating on coated VICRYL* plus antibacterial suture (coated polyglactin 910 suture with triclosan),” Surgical Infections, vol. 3, supplement 1, pp. S-45–S-53, 2002. View at Google Scholar · View at Scopus
  11. X. Ming, S. Rothenburger, and D. Yang, “In vitro antibacterial efficacy of MONOCRYL plus antibacterial suture (poliglecaprone 25 with Triclosan),” Surgical Infections, vol. 8, no. 2, pp. 201–208, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Rothenburger, D. Spangler, S. Bhende, and D. Burkley, “In vitro antimicrobial evaluation of coated VICRYL* plus antibacterial suture (coated polyglactin 910 with triclosan) using zone of inhibitation assays,” Surgical Infections, vol. 3, supplement 1, pp. S-79–S-87, 2002. View at Google Scholar · View at Scopus
  13. X. Ming, M. Nichols, and S. Rothenburger, “In vivo antibacterial efficacy of MONOCRYL plus antibacterial suture (poliglecaprone 25 with triclosan),” Surgical Infections, vol. 8, no. 2, pp. 209–214, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Gómez-Alonso, F. J. García-Criado, F. C. Parreño-Manchado et al., “Study of the efficacy of coated VICRYL plus antibacterial suture (coated polyglactin 910 suture with triclosan) in two animal models of general surgery,” Journal of Infection, vol. 54, no. 1, pp. 82–88, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Storch, S. J. Rothenburger, and G. Jacinto, “Experimental efficacy study of coated VICRYL plus antibacterial suture in in Guinea pigs challenged with Staphylococcus aureus,” Surgical Infections, vol. 5, no. 3, pp. 281–288, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. H. R. Ford, P. Jones, B. Gaines, K. Reblock, and D. L. Simpkins, “Intraoperative handling and wound healing: controlled clinical trial comparing coated VICRYL plus antibacterial suture (coated polyglactin 910 suture with triclosan) with coated VICRYL suture (coated polyglactin 910 suture),” Surgical Infections, vol. 6, no. 3, pp. 313–321, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. C. J. Rozzelle, J. Leonardo, and V. Li, “Antimicrobial suture wound closure for cerebrospinal fluid shunt surgery: a prospective, double-blinded, randomized controlled trial,” Journal of Neurosurgery: Pediatrics, vol. 2, no. 2, pp. 111–117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Fleck, R. Moidl, A. Blacky et al., “Triclosan-coated sutures for the reduction of sternal wound infections: economic considerations,” Annals of Thoracic Surgery, vol. 84, no. 1, pp. 232–236, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. C. Justinger, M. R. Moussavian, C. Schlueter, B. Kopp, O. Kollmar, and M. K. Schilling, “Antibiotic coating of abdominal closure sutures and wound infection,” Surgery, vol. 145, no. 3, pp. 330–334, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Mingmalairak, P. Ungbhakorn, and V. Paocharoen, “Efficacy of antimicrobial coating suture coated polyglactin 910 with tricosan (Vicryl plus) compared with polyglactin 910 (Vicryl) in reduced surgical site infection of appendicitis, double blind randomized control trial, preliminary safety report,” Journal of the Medical Association of Thailand, vol. 92, no. 6, pp. 770–775, 2009. View at Google Scholar · View at Scopus
  21. A. E. Deliaert, E. van den Kerckhove, S. Tuinder et al., “The effect of triclosan-coated sutures in wound healing. A double blind randomised prospective pilot study,” Journal of Plastic, Reconstructive and Aesthetic Surgery, vol. 62, no. 6, pp. 771–773, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Y. Chen, T. M. Chen, N. T. Dai et al., “Do antibacterial-coated sutures reduce wound infection in head and neck cancer reconstruction?” European Journal of Surgical Oncology, vol. 37, no. 4, pp. 300–304, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Williams, H. Sweetland, S. Goyal, N. Ivins, and D. J. Leaper, “Randomized trial of antimicrobial-coated sutures to prevent surgical site infection after breast cancer surgery,” Surgical Infections, vol. 12, no. 6, pp. 469–474, 2011. View at Publisher · View at Google Scholar
  24. Z. T. Zhang, H. W. Zhang, X. D. Fang et al., “Cosmetic outcome and surgical site infection rates of antibacterial absorbable (polyglactin 910) suture compared to Chinese silk suture in breast cancer surgery: a randomized pilot research,” Chinese Medical Journal, vol. 124, no. 5, pp. 719–724, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. T. G. Emori, D. H. Culver, T. C. Horan et al., “National nosocomial infections surveillance system (NNIS): description of surveillance methods,” American Journal of Infection Control, vol. 19, no. 1, pp. 19–35, 1991. View at Google Scholar · View at Scopus
  26. Comité technique des infections nosocomiales et des infections liées aux soins-Définition des infections liées aux soins, May 2007, http://www.sante-sports.gouv.fr/IMG/pdf/rapport_vcourte.pdf.
  27. SFAR, “Prévention de la maladie thromboembolique veineuse périopératoire,” 2005.
  28. D. R. Cox and E. J. Snell, The Analysis of Binary Data, Chapman & Hall, London, UK, 1970.
  29. M. A. Olsen, S. Chu-Ongsakul, K. E. Brandt, J. R. Dietz, J. Mayfield, and V. J. Fraser, “Hospital-associated costs due to surgical site infection after breast surgery,” Archives of Surgery, vol. 143, no. 1, pp. 53–60, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. M. L. Bertin, J. Crowe, and S. M. Gordon, “Determinants of surgical site infection after breast surgery,” American Journal of Infection Control, vol. 26, no. 1, pp. 61–65, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. L. T. Sørensen, J. Hørby, E. Friis, B. Pilsgaard, and T. Jørgensen, “Smoking as a risk factor for wound healing and infection in breast cancer surgery,” European Journal of Surgical Oncology, vol. 28, no. 8, pp. 815–820, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. D. Jones, H. B. Jampani, J. L. Newman, and A. S. Lee, “Triclosan: a review of effectiveness and safety in health care settings,” American Journal of Infection Control, vol. 28, no. 2, pp. 184–196, 2000. View at Google Scholar · View at Scopus
  33. H. P. Schweizer, “Triclosan: a widely used biocide and its link to antibiotics,” FEMS Microbiology Letters, vol. 202, no. 1, pp. 1–7, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. R. Chuanchuen, K. Beinlich, T. T. Hoang, A. Becher, R. R. Karkhoff-Schweizer, and H. P. Schweizer, “Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCD-OprJ,” Antimicrobial Agents and Chemotherapy, vol. 45, no. 2, pp. 428–432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. A. J. McBain, R. G. Ledder, P. Sreenivasan, and P. Gilbert, “Selection for high-level resistance by chronic triclosan exposure is not universal,” Journal of Antimicrobial Chemotherapy, vol. 53, no. 5, pp. 772–777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. R. G. Ledder, P. Gilbert, C. Willis, and A. J. McBain, “Effects of chronic triclosan exposure upon the antimicrobial susceptibility of 40 ex-situ environmental and human isolates,” Journal of Applied Microbiology, vol. 100, no. 5, pp. 1132–1140, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. A. E. Aiello, B. Marshall, S. B. Levy, P. Della-Latta, S. X. Lin, and E. Larson, “Antibacterial cleaning products and drug resistance,” Emerging Infectious Diseases, vol. 11, no. 10, pp. 1565–1570, 2005. View at Google Scholar · View at Scopus
  38. E. H. Blackstone, “Breaking down barriers: helpful breakthrough statistical methods you need to understand better,” Journal of Thoracic and Cardiovascular Surgery, vol. 122, no. 3, pp. 430–439, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Brunelli and G. Rocco, “Internal validation of risk models in lung resection surgery: bootstrap versus training-and-test sampling,” Journal of Thoracic and Cardiovascular Surgery, vol. 131, no. 6, pp. 1243–1247, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. G. L. Grunkemeier and Y. Wu, “Bootstrap resampling methods: something for nothing?” Annals of Thoracic Surgery, vol. 77, no. 4, pp. 1142–1144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. F. E. Harrell Jr., K. L. Lee, R. M. Califf, D. B. Pryor, and R. A. Rosati, “Regression modelling strategies for improved prognostic prediction,” Statistics in Medicine, vol. 3, no. 2, pp. 143–152, 1984. View at Publisher · View at Google Scholar