Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2013, Article ID 250435, 9 pages
http://dx.doi.org/10.1155/2013/250435
Research Article

Expression of the Classical and Nonclassical HLA Molecules in Breast Cancer

1Department of Clinical Analysis, School of Pharmaceutical Sciences, UNESP, SP, Brazil
2Department of Clinical Analysis, Laboratory of Cytology and Cell Biology, Faculty of Pharmaceutical Sciences, UNESP, Rua Expedicionários do Brasil 1621, 14801-902 Araraquara, SP, Brazil
3Institute of Surgical Pathology and Cytopathology, Araraquara, SP, Brazil
4Division of Clinical Immunology, Department of Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo, SP, Brazil
5Department of Pathology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), SP, Brazil

Received 28 May 2013; Revised 5 September 2013; Accepted 18 September 2013

Academic Editor: Vladimir F. Semiglazov

Copyright © 2013 Gisela Bevilacqua Rolfsen Ferreira da Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. S. Coughlin and D. U. Ekwueme, “Breast cancer as a global health concern,” Cancer Epidemiology, vol. 33, no. 5, pp. 315–318, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. H. T. Khong and N. P. Restifo, “Natural selection of tumor variants in the generation of “tumor escape” phenotypes,” Nature Immunology, vol. 3, no. 11, pp. 999–1005, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Bubeník, “MHC class I down-regulation: tumour escape from immune surveillance?” International Journal of Oncology, vol. 25, no. 2, pp. 487–491, 2004. View at Google Scholar · View at Scopus
  4. M. P. Pistillo, G. Nicolò, S. Salvi et al., “Biochemical analysis of HLA class I subunits expression in breast cancer tissues,” Human Immunology, vol. 61, no. 4, pp. 397–407, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Redondo, J. García, E. Villar et al., “Major histocompatibility complex status in breast carcinogenesis and relationship to apoptosis,” Human Pathology, vol. 34, no. 12, pp. 1283–1289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. G. L. Palmisano, E. Contardi, A. Morabito, V. Gargaglione, G. B. Ferrara, and M. P. Pistillo, “HLA-E surface expression is independent of the availability of HLA class I signal sequence-derived peptides in human tumor cell lines,” Human Immunology, vol. 66, no. 1, pp. 1–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. P. Moller, T. Mattfeldt, C. Gross et al., “Expression of HLA-A, -B, -C, -DR, -DP, -DQ, and of HLA-D-associated invariant chain (Ii) in non-neoplastic mammary epithelium fibroadenoma, adenoma, and carcinoma of the breast,” American Journal of Pathology, vol. 135, no. 1, pp. 73–83, 1989. View at Google Scholar · View at Scopus
  8. T. Torigoe, H. Asanuma, E. Nakazawa et al., “Establishment of a monoclonal anti-pan HLA class I antibody suitable for immunostaining of formalin-fixed tissue: unusually high frequency of down-regulation in breast cancer tissues,” Pathology International, vol. 62, no. 5, pp. 303–308, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. E. M. De Kruijf, A. Sajet, J. G. H. Van Nes et al., “HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients,” Journal of Immunology, vol. 185, no. 12, pp. 7452–7459, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. S. N. Georgiannos, A. Renaut, A. W. Goode, and M. Sheaff, “The immunophenotype and activation status of the lymphocytic infiltrate in human breast cancers, the role of the major histocompatibility complex in cell-mediated immune mechanisms, and their association with prognostic indicators,” Surgery, vol. 134, no. 5, pp. 827–834, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Ganss, B. Arnold, and G. J. Hämmerling, “Mini Review: overcoming tumor-intrinsic resistance to immune effector function,” European Journal of Immunology, vol. 34, no. 10, pp. 2635–2641, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. T. D. Tlsty and P. W. Hein, “Know thy neighbor: stromal cells can contribute oncogenic signals,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 54–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. I. Gudmundsdóttir, J. Gunnlaugur Jónasson, H. Sigurdsson, K. Olafsdóttir, L. Tryggvadóttir, and H. M. Ogmundsdóttir, “Altered expression of HLA class I antigens in breast cancer: association with prognosis,” International Journal of Cancer, vol. 89, pp. 500–505, 2000. View at Google Scholar
  14. A. Zia, F. W. Schildberg, and I. Funke, “MHC class I negative phenotype of disseminated tumor cells in bone marrow is associated with poor survival in R0M0 breast cancer patients,” International Journal of Cancer, vol. 93, no. 4, pp. 566–570, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Souen and F. M. Carvalho, “Relação entre a expressão imunoistoquímica da proteína Her-2 e os estádios de cânceres de mama e o status dos linfonodos,” Revista Brasileira de Mastologia, vol. 12, pp. 11–14, 2002. View at Google Scholar
  16. D. Pardoll, “Does the immune system see tumors as foreign or self?” Annual Review of Immunology, vol. 21, pp. 807–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Y. Wang, D. A. Lee, G. Peng et al., “Tumor-specific human CD4+ regulatory T cells and their ligands: implications for immunotherapy,” Immunity, vol. 20, no. 1, pp. 107–118, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Garbi, B. Arnold, S. Gordon, G. J. Hämmerling, and R. Ganss, “CpG motifs as proinflammatory factors render autochthonous tumors permissive for infiltration and destruction,” Journal of Immunology, vol. 172, no. 10, pp. 5861–5869, 2004. View at Google Scholar · View at Scopus
  19. W. L. McGuire and G. M. Clark, “Prognostic factors and treatment decisions in axillary-node-negative breast cancer,” The New England Journal of Medicine, vol. 326, no. 26, pp. 1756–1761, 1992. View at Google Scholar · View at Scopus
  20. E. C. Ibrahim, N. Guerra, M.-J. T. Lacombe et al., “Tumor-specific up-regulation of the nonclassical class I HLA-G antigen expression in renal carcinoma,” Cancer Research, vol. 61, no. 18, pp. 6838–6845, 2001. View at Google Scholar · View at Scopus
  21. G. L. Palmisano, M. P. Pistillo, P. Fardin et al., “Analysis of HLA-G expression in breast cancer tissues,” Human Immunology, vol. 63, no. 11, pp. 969–976, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Aractingi, J. Kanitakis, S. Euvrard, C. Le Danff, and E. D. Carosella, “Selective expression of HLA-G in malignant and premalignant skin specimens in kidney transplant recipients,” International Journal of Cancer, vol. 106, no. 2, pp. 232–235, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. J. Bukur, B. Malenica, C. Huber, and B. Seliger, “Altered expression of nonclassical hla class ib antigens in human renal cell carcinoma and its association with impaired immune response,” Human Immunology, vol. 64, no. 11, pp. 1081–1092, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Bukur, V. Rebmann, H. Grosse-Wilde et al., “Functional role of human leukocyte antigen-G up-regulation in renal cell carcinoma,” Cancer Research, vol. 63, no. 14, pp. 4107–4111, 2003. View at Google Scholar · View at Scopus
  25. C.-C. Chang, S. P. Murphy, and S. Ferrone, “Differential in vivo and in vitro HLA-G expression in melanoma cells: potential mechanisms,” Human Immunology, vol. 64, no. 11, pp. 1057–1063, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Algarra, A. García-Lora, T. Cabrera, F. Ruiz-Cabello, and F. Garrido, “The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape,” Cancer Immunology, Immunotherapy, vol. 53, no. 10, pp. 904–910, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. C. Ibrahim, S. Aractingi, Y. Allory et al., “Analysis of HLA antigen expression in benign and malignant melanocytic lesions reveals that upregulation of HLA-G expression correlates with malignant transformation, high inflammatory infiltration and HLA-A1 genotype,” International Journal of Cancer, vol. 108, no. 2, pp. 243–250, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Davidson, M. B. Elstrand, M. T. McMaster et al., “HLA-G expression in effusions is a possible marker of tumor susceptibility to chemotherapy in ovarian carcinoma,” Gynecologic Oncology, vol. 96, no. 1, pp. 42–47, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. N. Dutta, D. Majumder, A. Gupta, D. N. G. Mazumder, and S. Banerjee, “Analysis of human lymphocyte antigen class I expression in gastric cancer by reverse transcriptase-polymerase chain reaction,” Human Immunology, vol. 66, no. 2, pp. 164–169, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. D. E. Hansel, A. Rahman, R. E. Wilentz et al., “HLA-G upregulation in pre-malignant and malignant lesions of the gastrointestinal tract,” International Journal of Gastrointestinal Cancer, vol. 35, no. 1, pp. 15–23, 2005. View at Google Scholar · View at Scopus
  31. G. Mouillot, C. Marcou, P. Rousseau, N. Rouas-Freiss, E. D. Carosella, and P. Moreau, “HLA-G gene activation in tumor cells involves cis-acting epigenetic changes,” International Journal of Cancer, vol. 113, no. 6, pp. 928–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. P. L. Bouteiller and A. Blaschitz, “The functionality of HLA-G is emerging,” Immunological Reviews, vol. 167, pp. 233–244, 1999. View at Google Scholar · View at Scopus
  33. M. Urosevic, M. O. Kurrer, J. Kamarashev et al., “Human leukocyte antigen G up-regulation in lung cancer associates with high-grade histology, human leukocyte antigen class I loss and interleukin-10 production,” American Journal of Pathology, vol. 159, no. 3, pp. 817–824, 2001. View at Google Scholar · View at Scopus
  34. S. Lefebvre, M. Antoine, S. Uzan et al., “Specific activation of the non-classical class I histocompatibility HLA-G antigen and expression of the ILT2 inhibitory receptor in human breast cancer,” Journal of Pathology, vol. 196, no. 3, pp. 266–274, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. R. Marín, F. Ruiz-Cabello, S. Pedrinaci et al., “Analysis of HLA-E expression in human tumors,” Immunogenetics, vol. 54, no. 11, pp. 767–775, 2003. View at Google Scholar · View at Scopus
  36. P. Tomasec, V. Braud, M. Rickards et al., “Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovírusgpUL40,” Science, vol. 287, pp. 1031–1033, 2000. View at Google Scholar
  37. F. Garrido, F. Ruiz-Cabello, T. Cabrera et al., “Implications for immunosurveillance of altered HLA class I phenotypes in human tumours,” Immunology Today, vol. 18, no. 2, pp. 89–95, 1997. View at Publisher · View at Google Scholar · View at Scopus
  38. R. H. Hughes, M. Norval, and S. E. M. Howie, “Expression of major histocompatibility class II antigens by Langerhans' cells in cervical intraepithelial neoplasia,” Journal of Clinical Pathology, vol. 41, no. 3, pp. 253–259, 1988. View at Google Scholar · View at Scopus
  39. M. E. F. Smith, C. S. Holgate, J. M. S. Williamson, I. Grigor, P. Quirke, and C. C. Bird, “Major histocompatibility complex class II antigen expression in B and T cell non-Hodgkin's lymphoma,” Journal of Clinical Pathology, vol. 40, pp. 34–41, 1986. View at Google Scholar
  40. R. L. Elliott, X. P. Jiang, J. T. Phillips, B. G. Barnett, and J. F. Head, “Human leukocyte antigen G expression in breast cancer: role in immunosuppression,” Cancer Biotherapy and Radiopharmaceuticals, vol. 26, no. 2, pp. 153–157, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. R. Dent, M. Trudeau, K. I. Pritchard et al., “Triple-negative breast cancer: clinical features and patterns of recurrence,” Clinical Cancer Research, vol. 13, no. 15, pp. 4429–4434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. L. A. Carey, E. C. Dees, L. Sawyer et al., “The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes,” Clinical Cancer Research, vol. 13, no. 8, pp. 2329–2334, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. P. K. Shetty, S. I. Thamake, S. Biswas, S. L. Johansson, and J. K. Vishwanatha, “Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer,” PLoS ONE, vol. 7, no. 9, Article ID e44299, 2012. View at Google Scholar