Table of Contents Author Guidelines Submit a Manuscript
International Journal of Breast Cancer
Volume 2013 (2013), Article ID 808317, 26 pages
http://dx.doi.org/10.1155/2013/808317
Review Article

Diet across the Lifespan and the Association with Breast Density in Adulthood

1Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
2Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
3Department of Nutritional Sciences, Center for Childhood Obesity Research, The Pennsylvania State University, 129 Noll Laboratory, University Park, PA 16802, USA
4The Methodology Center, The Pennsylvania State University, 400 Calder Square II, State College, PA 16801, USA

Received 16 October 2012; Accepted 30 November 2012

Academic Editor: Heather E. Kleiner-Hancock

Copyright © 2013 Jessica Lindgren et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. DeSantis, R. Siegel, P. Bandi et al., “Breast cancer statistics,” CA—A Cancer Journal for Clinicians, vol. 61, no. 6, pp. 409–418, 2011. View at Google Scholar
  2. WCRF/AICR, Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective, WCRF/AICR, Washington, DC, USA, 2007.
  3. G. A. Colditz and A. L. Frazier, “Models of breast cancer show that risk is set by events of early life: prevention efforts must shift focus,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 5, pp. 567–571, 1995. View at Google Scholar · View at Scopus
  4. American Cancer Society, 2012, http://www.cancer.org.
  5. N. F. Boyd, J. M. Rommens, K. Vogt et al., “Mammographic breast density as an intermediate phenotype for breast cancer,” The Lancet Oncology, vol. 6, no. 10, pp. 798–808, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Brisson, B. Brisson, G. Cote, E. Maunsell, S. Berube, and J. Robert, “Tamoxifen and mammographic breast densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 9, pp. 911–915, 2000. View at Google Scholar · View at Scopus
  7. M. Freedman, J. San Martin, J. O'Gorman et al., “Digitized mammography: a clinical trial of postmenopausal women randomly assigned to receive raloxifene, estrogen, or placebo,” Journal of the National Cancer Institute, vol. 93, no. 1, pp. 51–56, 2001. View at Google Scholar · View at Scopus
  8. G. A. Greendale, B. A. Reboussin, S. Slone, C. Wasilauskas, M. C. Pike, and G. Ursin, “Postmenopausal hormone therapy and change in mammographic density,” Journal of the National Cancer Institute, vol. 95, no. 1, pp. 30–37, 2003. View at Google Scholar · View at Scopus
  9. C. M. Vachon, C. C. Kuni, K. Anderson, V. E. Anderson, and T. A. Sellers, “Association of mammographically defined percent breast density with epidemiologic risk factors for breast cancer (United States),” Cancer Causes and Control, vol. 11, no. 7, pp. 653–662, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. V. Lope, B. Perez-Gomez, C. Sanchez-Contador et al., “Obstetric history and mammographic density: a population-based cross-sectional study in Spain (DDM-Spain),” Breast Cancer Research and Treatment, vol. 132, no. 3, pp. 1137–1146, 2012. View at Google Scholar
  11. L. M. Butler, E. B. Gold, G. A. Greendale et al., “Menstrual and reproductive factors in relation to mammographic density: the Study of Women's Health Across the Nation (SWAN),” Breast Cancer Research and Treatment, vol. 112, no. 1, pp. 165–174, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Haars, C. H. Van Gils, S. G. Elias, M. TteLokate, P. A. H. Van Noord, and P. H. M. Peeters, “The influence of a period of caloric restriction due to the Dutch Famine on breast density,” International Journal of Cancer, vol. 126, no. 9, pp. 2211–2215, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Mishra, I. Dos Santos Silva, S. A. McNaughton, A. Stephen, and D. Kuh, “Energy intake and dietary patterns in childhood and throughout adulthood and mammographic density: results from a British prospective cohort,” Cancer Causes and Control, vol. 22, no. 2, pp. 227–235, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. G. Mishra, V. McCormack, D. Kuh, R. Hardy, A. Stephen, and I. Dos Santos Silva, “Dietary calcium and vitamin D intakes in childhood and throughout adulthood and mammographic density in a British birth cohort,” British Journal of Cancer, vol. 99, no. 9, pp. 1539–1543, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. T. A. Sellers, C. M. Vachon, V. S. Pankratz et al., “Association of childhood and adolescent anthropometric factors, physical activity, and diet with adult mammographic breast density,” American Journal of Epidemiology, vol. 166, no. 4, pp. 456–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Tseng, T. O. Olufade, K. A. Evers, and C. Byrne, “Adolescent lifestyle factors and adult breast density in U.S. Chinese immigrant women,” Nutrition and Cancer, vol. 63, no. 3, pp. 342–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. C. M. Vachon, T. A. Sellers, C. A. Janney et al., “Alcohol intake in adolescence and mammographic density,” International Journal of Cancer, vol. 117, no. 5, pp. 837–841, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Dorgan, L. Liu, C. Klifa et al., “Adolescent diet and subsequent serum hormones, breast density, and bone mineral density in young women: results of the dietary intervention study in children follow-up study,” Cancer Epidemiology Biomarkers and Prevention, vol. 19, no. 6, pp. 1545–1556, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. E. R. Bertone-Johnson, R. T. Chlebowski, J. E. Manson et al., “Dietary vitamin D and calcium intake and mammographic density in postmenopausal women,” Menopause, vol. 17, no. 6, pp. 1152–1160, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. R. Bertone-Johnson, A. McTiernan, C. A. Thomson et al., “Vitamin D and calcium supplementation and one-year change in mammographic density in the women's health initiative calcium and vitamin D trial,” Cancer Epidemiology, Biomarkers & Prevention, vol. 21, no. 3, pp. 462–473, 2012. View at Google Scholar
  21. S. Bérubé, C. Diorio, B. Mâsse et al., “Vitamin D and calcium intakes from food or supplements and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 7, pp. 1653–1659, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Bérubé, C. Diorio, W. Verhoek-Oftedahl, and J. Brisson, “Vitamin D, calcium, and mammographic breast densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 13, no. 9, pp. 1466–1472, 2004. View at Google Scholar · View at Scopus
  23. C. Diorio, S. Bérubé, C. Byrne et al., “Influence of insulin-like growth factors on the strength of the relation of vitamin D and calcium intakes to mammographic breast density,” Cancer Research, vol. 66, no. 1, pp. 588–597, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. G. Masala, D. Ambrogetti, M. Assedi, D. Giorgi, M. R. Del Turco, and D. Palli, “Dietary and lifestyle determinants of mammographic breast density. A longitudinal study in a Mediterranean population,” International Journal of Cancer, vol. 118, no. 7, pp. 1782–1789, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Nordevang, E. Azavedo, G. Svane, B. Nilsson, and L. E. Holm, “Dietary habits and mammographic patterns in patients with breast cancer,” Breast Cancer Research and Treatment, vol. 26, no. 3, pp. 207–215, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. J. A. Knight, C. M. Vachon, R. A. Vierkant, R. Vieth, J. R. Cerhan, and T. A. Sellers, “No association between 25-hydroxyvitamin D and mammographic density,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 10, pp. 1988–1992, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. M. Tseng, C. Byrne, K. A. Evers, and M. B. Daly, “Dietary intake and breast density in high-risk women: a cross-sectional study,” Breast Cancer Research, vol. 9, no. 5, article R72, 2007. View at Google Scholar · View at Scopus
  28. G. Maskarinec, Y. Takata, I. Pagano, G. Lurie, L. R. Wilkens, and L. N. Kolonel, “Alcohol consumption and mammographic density in a multiethnic population,” International Journal of Cancer, vol. 118, no. 10, pp. 2579–2583, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. E. Sala, R. Warren, S. Duffy, A. Welch, R. Luben, and N. Day, “High risk mammographic parenchymal patterns and diet: a case-control study,” British Journal of Cancer, vol. 83, no. 1, pp. 121–126, 2000. View at Google Scholar · View at Scopus
  30. J. Brisson, R. Verreault, A. S. Morrison, S. Tennina, and F. Meyer, “Diet, mammographic features of breast tissue, and breast cancer risk,” American Journal of Epidemiology, vol. 130, no. 1, pp. 14–24, 1989. View at Google Scholar · View at Scopus
  31. C. Nagata, T. Matsubara, H. Fujita et al., “Associations of mammographic density with dietary factors in Japanese women,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 12, pp. 2877–2880, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. S. A. Qureshi, E. Couto, M. Hilsen et al., “Mammographic density and intake of selected nutrients and vitamins in Norwegian women,” Nutrition and Cancer, vol. 63, no. 7, pp. 1011–1020, 2011. View at Google Scholar
  33. M. Tseng, R. A. Vierkant, L. H. Kushi, T. A. Sellers, and C. M. Vachon, “Dietary patterns and breast density in the Minnesota Breast Cancer Family Study,” Cancer Causes and Control, vol. 19, no. 5, pp. 481–489, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Bérubé, C. Diorio, and J. Brisson, “Multivitamin-multimineral supplement use and mammographic breast density,” American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1400–1404, 2008. View at Google Scholar · View at Scopus
  35. N. F. Boyd, C. Greenberg, G. Lockwood et al., “Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial,” Journal of the National Cancer Institute, vol. 89, no. 7, pp. 488–496, 1997. View at Google Scholar · View at Scopus
  36. L. J. Martin, C. V. Greenberg, V. Kriukov et al., “Effect of a low-fat, high-carbohydrate dietary intervention on change in mammographic density over menopause,” Breast Cancer Research and Treatment, vol. 113, no. 1, pp. 163–172, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. J. A. Knight, L. J. Martin, C. V. Greenberg et al., “Macronutrient intake and change in mammographic density at menopause: results from a randomized trial,” Cancer Epidemiology Biomarkers and Prevention, vol. 8, no. 2, pp. 123–128, 1999. View at Google Scholar · View at Scopus
  38. C. Klifa, J. Carballido-Gamio, L. Wilmes et al., “Magnetic resonance imaging for secondary assessment of breast density in a high-risk cohort,” Magnetic Resonance Imaging, vol. 28, no. 1, pp. 8–15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Balleyguier, S. Ayadi, K. Van Nguyen, D. Vanel, C. Dromain, and R. Sigal, “BIRADS classification in mammography,” European Journal of Radiology, vol. 61, no. 2, pp. 192–194, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. J. N. Wolfe, “Breast patterns as an index of risk for developing breast cancer,” American Journal of Roentgenology, vol. 126, no. 6, pp. 1130–1137, 1976. View at Google Scholar · View at Scopus
  41. I. T. Gram, E. Funkhouser, and L. Tabár, “The Tabar classification of mammographic parenchymal patterns,” European Journal of Radiology, vol. 24, no. 2, pp. 131–136, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. J. W. Byng, M. J. Yaffe, R. A. Jong et al., “Analysis of mammographic density and breast cancer risk from digitized mammograms,” Radiographics, vol. 18, no. 6, pp. 1587–1598, 1998. View at Google Scholar · View at Scopus
  43. C. M. Rutter, M. T. Mandelson, M. B. Laya, S. Taplin, and Seger, “Changes in breast density associated with initiation, discontinuation, and continuing use of hormone replacement therapy,” JAMA, vol. 285, no. 2, pp. 171–176, 2001. View at Google Scholar · View at Scopus
  44. J. Stone, R. M. L. Warren, E. Pinney, J. Warwick, and J. Cuzick, “Determinants of percentage and area measures of mammographic density,” American Journal of Epidemiology, vol. 170, no. 12, pp. 1571–1578, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. F. Boyd, G. S. Dite, J. Stone et al., “Heritability of mammographic density, a risk factor for breast cancer,” The New England Journal of Medicine, vol. 347, no. 12, pp. 886–894, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. E. H. Ruder, J. F. Dorgan, S. Kranz, P. M. Kris-Etherton, and T. J. Hartman, “Examining breast cancer growth and lifestyle risk factors: early life, childhood, and adolescence,” Clinical Breast Cancer, vol. 8, no. 4, pp. 334–342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. J. R. Cerhan, T. A. Sellers, C. A. Janney, V. S. Pankratz, K. R. Brandt, and C. M. Vachon, “Prenatal and perinatal correlates of adult mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 6, pp. 1502–1508, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. W. C. Willett, Nutritional Epidemiology, Oxford University Press, New York, NY, USA, 2nd edition, 1998.
  49. P. A. H. Van Noord, “Breast cancer and the brain: a neurodevelopmental hypothesis to explain the opposing effects of caloric deprivation during the Dutch Famine of 1944-1945 on breast cancer and its risk factors,” Journal of Nutrition, vol. 134, no. 12, supplement, pp. 3399S–3406S, 2004. View at Google Scholar · View at Scopus
  50. C. Diorio, M. Pollak, C. Byrne et al., “Insulin-like growth factor-I, IGF-binding protein-3, and mammographic breast density,” Cancer Epidemiology Biomarkers and Prevention, vol. 14, no. 5, pp. 1065–1073, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. C. M. Vachon, L. H. Kushi, J. R. Cerhan, C. C. Kuni, and T. A. Sellers, “Association of diet and mammographic breast density in the Minnesota breast cancer family cohort,” Cancer Epidemiology Biomarkers and Prevention, vol. 9, no. 2, pp. 151–160, 2000. View at Google Scholar · View at Scopus
  52. K. W. Singletary and S. M. Gapstur, “Alcohol and breast cancer: review of epidemiologic and experimental evidence and potential mechanisms,” JAMA, vol. 286, no. 17, pp. 2143–2151, 2001. View at Google Scholar · View at Scopus
  53. R. G. Dumitrescu and P. G. Shields, “The etiology of alcohol-induced breast cancer,” Alcohol, vol. 35, no. 3, pp. 213–225, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. A. Vrieling, D. W. Voskuil, H. B. B. D. Mesquita et al., “Dietary determinants of circulating insulin-like growth factor (IGF)-I and IGF binding proteins 1, -2 and -3 in women in the Netherlands,” Cancer Causes and Control, vol. 15, no. 8, pp. 787–796, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. G. Maskarinec, M. Verheus, and J. A. Tice, “Epidemiologic studies of isoflavones & mammographic density,” Nutrients, vol. 2, no. 1, pp. 35–48, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Lipkin and H. L. Newmark, “Vitamin D, calcium and prevention of breast cancer: a review,” Journal of the American College of Nutrition, vol. 18, no. 5, supplement, pp. 392S–397S, 1999. View at Google Scholar · View at Scopus
  57. J. Welsh, “Targets of vitamin D receptor signaling in the mammary gland,” Journal of Bone and Mineral Research, vol. 22, no. 2, pp. V86–V90, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. J. Cuzick, J. Warwick, E. Pinney, R. M. L. Warren, and S. W. Duffy, “Tamoxifen and breast density in women at increased risk of breast cancer,” Journal of the National Cancer Institute, vol. 96, no. 8, pp. 621–628, 2004. View at Google Scholar · View at Scopus
  59. J. Brisson, S. Bérubé, C. Diorio, M. Sinotte, M. Pollak, and B. Mâsse, “Synchronized seasonal variations of mammographic breast density and plasma 25-hydroxyvitamin D,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 5, pp. 929–933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. M. F. Holick, “Vitamin D: its role in cancer prevention and treatment,” Progress in Biophysics and Molecular Biology, vol. 92, no. 1, pp. 49–59, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Byrne, G. A. Colditz, W. C. Willet, F. E. Speizer, M. Pollak, and S. E. Hankinson, “Plasma insulin-like growth factor (IGF) I, IGF-binding protein 3, and mammographic density,” Cancer Research, vol. 60, no. 14, pp. 3744–3748, 2000. View at Google Scholar · View at Scopus
  62. J. A. Harvey and V. E. Bovbjerg, “Quantitative assessment of mammographic breast density: relationship with breast cancer risk,” Radiology, vol. 230, no. 1, pp. 29–41, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. N. F. Boyd, P. Connelly, J. Byng et al., “Plasma lipids, lipoproteins, and mammographic densities,” Cancer Epidemiology Biomarkers and Prevention, vol. 4, no. 7, pp. 727–733, 1995. View at Google Scholar · View at Scopus
  64. F. B. Hu, “Dietary pattern analysis: a new direction in nutritional epidemiology,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 3–9, 2002. View at Google Scholar
  65. L. M. Butler, E. B. Gold, S. M. Conroy et al., “Active, but not passive cigarette smoking was inversely associated with mammographic density,” Cancer Causes and Control, vol. 21, no. 2, pp. 301–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. M. Tseng, T. A. Sellers, R. A. Vierkant, L. H. Kushi, and C. M. Vachon, “Mediterranean diet and breast density in the Minnesota breast cancer family study,” Nutrition and Cancer, vol. 60, no. 6, pp. 703–709, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Hooper, G. Madhavan, J. A. Tice, S. J. Leinster, and A. Cassidy, “Effects of isoflavones on breast density in pre-and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials,” Human Reproduction Update, vol. 16, no. 6, Article ID dmq011, pp. 745–760, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. S. Chan, M. Y. Su, F. J. Lei et al., “Menstrual cycle-related fluctuations in breast density measured by using three-dimensional MR imaging,” Radiology, vol. 261, no. 3, pp. 744–751, 2011. View at Google Scholar
  69. E. White, P. Velentgas, M. T. Mandelson et al., “Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years,” Journal of the National Cancer Institute, vol. 90, no. 12, pp. 906–910, 1998. View at Google Scholar · View at Scopus
  70. M. Morrow, R. T. Chatterton Jr., A. W. Rademaker et al., “A prospective study of variability in mammographic density during the menstrual cycle,” Breast Cancer Research and Treatment, vol. 121, no. 3, pp. 565–574, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. D. S. M. Buist, E. J. Aiello, D. L. Miglioretti, and E. White, “Mammographic breast density, dense area, and breast area differences by phase in the menstrual cycle,” Cancer Epidemiology Biomarkers and Prevention, vol. 15, no. 11, pp. 2303–2306, 2006. View at Publisher · View at Google Scholar · View at Scopus