International Journal of Biomedical Imaging
 Journal metrics
Acceptance rate18%
Submission to final decision103 days
Acceptance to publication129 days
CiteScore2.110
Impact Factor-
 Submit

Detection and Localization of Early-Stage Multiple Brain Tumors Using a Hybrid Technique of Patch-Based Processing, k-means Clustering and Object Counting

Read the full article

 Journal profile

International Journal of Biomedical Imaging aims to promote research and development of biomedical imaging by publishing high-quality research articles and reviews in this rapidly growing interdisciplinary field.

 Editor spotlight

International Journal of Biomedical Imaging maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

A Semi-Automated Usability Evaluation Framework for Interactive Image Segmentation Systems

For complex segmentation tasks, the achievable accuracy of fully automated systems is inherently limited. Specifically, when a precise segmentation result is desired for a small amount of given data sets, semi-automatic methods exhibit a clear benefit for the user. The optimization of human computer interaction (HCI) is an essential part of interactive image segmentation. Nevertheless, publications introducing novel interactive segmentation systems (ISS) often lack an objective comparison of HCI aspects. It is demonstrated that even when the underlying segmentation algorithm is the same throughout interactive prototypes, their user experience may vary substantially. As a result, users prefer simple interfaces as well as a considerable degree of freedom to control each iterative step of the segmentation. In this article, an objective method for the comparison of ISS is proposed, based on extensive user studies. A summative qualitative content analysis is conducted via abstraction of visual and verbal feedback given by the participants. A direct assessment of the segmentation system is executed by the users via the system usability scale (SUS) and AttrakDiff-2 questionnaires. Furthermore, an approximation of the findings regarding usability aspects in those studies is introduced, conducted solely from the system-measurable user actions during their usage of interactive segmentation prototypes. The prediction of all questionnaire results has an average relative error of 8.9%, which is close to the expected precision of the questionnaire results themselves. This automated evaluation scheme may significantly reduce the resources necessary to investigate each variation of a prototype’s user interface (UI) features and segmentation methodologies.

Research Article

Automated Estimation of Acute Infarct Volume from Noncontrast Head CT Using Image Intensity Inhomogeneity Correction

Identification of early ischemic changes (EIC) on noncontrast head CT scans performed within the first few hours of stroke onset may have important implications for subsequent treatment, though early stroke is poorly delimited on these studies. Lack of sharp lesion boundary delineation in early infarcts precludes manual volume measures, as well as measures using edge-detection or region-filling algorithms. We wished to test a hypothesis that image intensity inhomogeneity correction may provide a sensitive method for identifying the subtle regional hypodensity which is characteristic of early ischemic infarcts. A digital image analysis algorithm was developed using image intensity inhomogeneity correction (IIC) and intensity thresholding. Two different IIC algorithms (FSL and ITK) were compared. The method was evaluated using simulated infarcts and clinical cases. For synthetic infarcts, measured infarct volumes demonstrated strong correlation to the true lesion volume (for 20% decreased density “infarcts,” Pearson r = 0.998 for both algorithms); both algorithms demonstrated improved accuracy with increasing lesion size and decreasing lesion density. In clinical cases (41 acute infarcts in 30 patients), calculated infarct volumes using FSL IIC correlated with the ASPECTS scores (Pearson r = 0.680) and the admission NIHSS (Pearson r = 0.544). Calculated infarct volumes were highly correlated with the clinical decision to treat with IV-tPA. Image intensity inhomogeneity correction, when applied to noncontrast head CT, provides a tool for image analysis to aid in detection of EIC, as well as to evaluate and guide improvements in scan quality for optimal detection of EIC.

Research Article

Brain Tumor Segmentation Based on Hybrid Clustering and Morphological Operations

Inference of tumor and edema areas from brain magnetic resonance imaging (MRI) data remains challenging owing to the complex structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve the stability of segmentation, an effective hybrid clustering algorithm combined with morphological operations is proposed for segmenting brain tumors in this paper. The main contributions of the paper are as follows: firstly, adaptive Wiener filtering is utilized for denoising, and morphological operations are used for removing nonbrain tissue, effectively reducing the method’s sensitivity to noise. Secondly, K-means++ clustering is combined with the Gaussian kernel-based fuzzy C-means algorithm to segment images. This clustering not only improves the algorithm’s stability, but also reduces the sensitivity of clustering parameters. Finally, the extracted tumor images are postprocessed using morphological operations and median filtering to obtain accurate representations of brain tumors. In addition, the proposed algorithm was compared with other current segmentation algorithms. The results show that the proposed algorithm performs better in terms of accuracy, sensitivity, specificity, and recall.

Research Article

Towards Reinforced Brain Tumor Segmentation on MRI Images Based on Temperature Changes on Pathologic Area

Brain tumor segmentation is the process of separating the tumor from normal brain tissues; in clinical routine, it provides useful information for diagnosis and treatment planning. However, it is still a challenging task due to the irregular form and confusing boundaries of tumors. Tumor cells thermally represent a heat source; their temperature is high compared to normal brain cells. The main aim of the present paper is to demonstrate that thermal information of brain tumors can be used to reduce false positive and false negative results of segmentation performed in MRI images. Pennes bioheat equation was solved numerically using the finite difference method to simulate the temperature distribution in the brain; Gaussian noises of ±2% were added to the simulated temperatures. Canny edge detector was used to detect tumor contours from the calculated thermal map, as the calculated temperature showed a large gradient in tumor contours. The proposed method is compared to Chan–Vese based level set segmentation method applied to T1 contrast-enhanced and Flair MRI images of brains containing tumors with ground truth. The method is tested in four different phantom patients by considering different tumor volumes and locations and 50 synthetic patients taken from BRATS 2012 and BRATS 2013. The obtained results in all patients showed significant improvement using the proposed method compared to segmentation by level set method with an average of 0.8% of the tumor area and 2.48% of healthy tissue was differentiated using thermal images only. We conclude that tumor contours delineation based on tumor temperature changes can be exploited to reinforce and enhance segmentation algorithms in MRI diagnostic.

Research Article

An Optical Flow-Based Approach for Minimally Divergent Velocimetry Data Interpolation

Three-dimensional (3D) biomedical image sets are often acquired with in-plane pixel spacings that are far less than the out-of-plane spacings between images. The resultant anisotropy, which can be detrimental in many applications, can be decreased using image interpolation. Optical flow and/or other registration-based interpolators have proven useful in such interpolation roles in the past. When acquired images are comprised of signals that describe the flow velocity of fluids, additional information is available to guide the interpolation process. In this paper, we present an optical-flow based framework for image interpolation that also minimizes resultant divergence in the interpolated data.

Research Article

Magnetic Resonance Angiography Shows Increased Arterial Blood Supply Associated with Murine Mammary Cancer

Breast cancer is a major cause of morbidity and mortality in Western women. Tumor neoangiogenesis, the formation of new blood vessels from pre-existing ones, may be used as a prognostic marker for cancer progression. Clinical practice uses dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) to detect cancers based on increased blood flow and capillary permeability. However, DCE-MRI requires repeated injections of contrast media. Therefore we explored the use of noninvasive time-of-flight (TOF) MR angiography for serial studies of mouse mammary glands to measure the number and size of arteries feeding mammary glands with and without cancer. Virgin female C3(1) SV40 TAg mice (n=9), aged 18-20 weeks, were imaged on a 9.4 Tesla small animal scanner. Multislice T2-weighted (T2W) images and TOF-MRI angiograms were acquired over inguinal mouse mammary glands. The data were analyzed to determine tumor burden in each mammary gland and the volume of arteries feeding each mammary gland. After in vivo MRI, inguinal mammary glands were excised and fixed in formalin for histology. TOF angiography detected arteries with a diameter as small as 0.1 mm feeding the mammary glands. A significant correlation (r=0.79; p< 0.0001) was found between tumor volume and the arterial blood volume measured in mammary glands. Mammary arterial blood volumes ranging from 0.08 mm3 to 3.81 mm3 were measured. Tumors and blood vessels found on in vivo T2W and TOF images, respectively, were confirmed with ex vivo histological images. These results demonstrate increased recruitment of arteries to mammary glands with cancer, likely associated with neoangiogenesis. Neoangiogenesis may be detected by TOF angiography without injection of contrast agents. This would be very useful in mouse models where repeat placement of I.V. lines is challenging. In addition, analogous methods could be tested in humans to evaluate the vasculature of suspicious lesions without using contrast agents.

International Journal of Biomedical Imaging
 Journal metrics
Acceptance rate18%
Submission to final decision103 days
Acceptance to publication129 days
CiteScore2.110
Impact Factor-
 Submit