Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2010, Article ID 195274, 11 pages
http://dx.doi.org/10.1155/2010/195274
Research Article

Application of Symmetry Adapted Function Method for Three-Dimensional Reconstruction of Octahedral Biological Macromolecules

1Institute of Modern Physics, Xiangtan University, Xiangtan 411105, China
2National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China

Received 2 September 2009; Accepted 6 November 2009

Academic Editor: Shan Zhao

Copyright © 2010 Songjun Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

A method for three-dimensional (3D) reconstruction of macromolecule assembles, that is, octahedral symmetrical adapted functions (OSAFs) method, was introduced in this paper and a series of formulations for reconstruction by OSAF method were derived. To verify the feasibility and advantages of the method, two octahedral symmetrical macromolecules, that is, heat shock protein and the Red-cell L Ferritin, were utilized as examples to implement reconstruction by the OSAF method. The schedule for simulation was designed as follows: 2000 random orientated projections of single particles with predefined Euler angles and centers of origins were generated, then different levels of noises that is signal-to-noise ratio (S/N) , and 0.8 were added. The structures reconstructed by the OSAF method were in good agreement with the standard models and the relative errors of the structures reconstructed by the OSAF method to standard structures were very little even for high level noise. The facts mentioned above account for that the OSAF method is feasible and efficient approach to reconstruct structures of macromolecules and have ability to suppress the influence of noise.