Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2010, Article ID 913434, 9 pages
http://dx.doi.org/10.1155/2010/913434
Research Article

Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

1School of Electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
2Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an, Shaanxi 710071, China
3Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 30 September 2009; Revised 18 December 2009; Accepted 5 February 2010

Academic Editor: Shan Zhao

Copyright © 2010 Kuan Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nature Biotechnology, vol. 23, no. 3, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annual Review of Biomedical Engineering, vol. 4, pp. 235–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Arridge and J. C. Hebden, “Optical imaging in medicine—II: modelling and reconstruction,” Physics in Medicine and Biology, vol. 42, no. 5, pp. 841–853, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Physics in Medicine and Biology, vol. 50, no. 4, pp. R1–R43, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, “The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions,” Medical Physics, vol. 27, no. 1, pp. 252–264, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine, vol. 47, no. 2, pp. 131–146, 1995. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Margallo-Balbás and P. J. French, “Shape based Monte Carlo code for light transport in complex heterogeneous tissues,” Optics Express, vol. 15, no. 21, pp. 14086–14098, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Optics Express, vol. 10, no. 3, pp. 159–170, 2002. View at Google Scholar · View at Scopus
  9. H. Li, J. Tian, F. Zhu et al., “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the monte carlo method,” Academic Radiology, vol. 11, no. 9, pp. 1029–1038, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Medical Physics, vol. 10, no. 6, pp. 824–830, 1983. View at Publisher · View at Google Scholar · View at Scopus
  11. M. I. Mishchenko, “Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics,” Applied Optics, vol. 41, no. 33, pp. 7114–7134, 2002. View at Google Scholar · View at Scopus
  12. J. F. Briesmeister, Ed., “MCNPTM—a general Monte Carlo N-particle transport code, Version 4B,” Los Alamos National Laboratory Manual LA-12625-M, 1997.
  13. J. Ripoll and V. Ntziachristos, “Imaging scattering media from a distance: theory and applications of noncontact optical tomography,” Modern Physics Letters B, vol. 18, no. 28-29, pp. 1403–1431, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Chen, X. Gao, X. Qu et al., “A study of photon propagation in free-space based on hybrid radiosity-radiance theorem,” Optics Express, vol. 17, no. 18, pp. 16266–16280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, Boca Raton, Fla, USA, 1991.
  16. H. Li, Studies on forward and inverse problems in in vivo bioluminescent tomography imaging, Ph.D. dissertation, Institute of Automation, Chinese Academy of Sciences, 2005.
  17. L. Wang and S. L. Jacques, Monte Carlo Modeling of Light Transport in Multi-layered Tissues in Standard C, The University of Texas M.D. Anderson Cancer Center, Houston, Tex, USA, 1992.
  18. S. A. Prahl, Light transport in tissue, Ph.D. dissertation, University of Texas, Austin, Tex, USA, 1988.
  19. J. Zhang and X. Fang, Infrared Physics, Xidian University Press, Xi'an, China, 2004.
  20. A. D. Klose and E. W. Larsen, “Light transport in biological tissue based on the simplified spherical harmonics equations,” Journal of Computational Physics, vol. 220, no. 1, pp. 441–470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Qin, H. Zhao, Y. Tanikawa, and F. Gao, “Experimental determination of optical properties in turbid medium by TCSPC technique,” in Optical Tomography and Spectroscopy of Tissue VII, vol. 6434 of Proceedings of SPIE, p. 64342E, January 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Physics in Medicine and Biology, vol. 50, no. 17, pp. 4225–4241, 2005. View at Publisher · View at Google Scholar · View at Scopus