Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2011, Article ID 203537, 11 pages
http://dx.doi.org/10.1155/2011/203537
Research Article

Sparse Regularization-Based Reconstruction for Bioluminescence Tomography Using a Multilevel Adaptive Finite Element Method

1Life Sciences Research Center, School of Life Sciences and Technology, Xidian University, Xi'an 710071, China
2School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi 710069, China
3Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Received 30 April 2010; Accepted 13 August 2010

Academic Editor: Robert J. Plemmons

Copyright © 2011 Xiaowei He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. H. Contag and M. H. Bachmann, “Advances in in vivo bioluminescence imaging of gene expression,” Annual Review of Biomedical Engineering, vol. 4, pp. 235–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nature Reviews Drug Discovery, vol. 7, no. 7, pp. 591–607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Weissleder and M. J. Pittet, “Imaging in the era of molecular oncology,” Nature, vol. 452, no. 7187, pp. 580–589, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nature Biotechnology, vol. 23, no. 3, pp. 313–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Tian, J. Bai, X.-P. Yan et al., “Multimodality molecular imaging: improving image quality,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, no. 5, pp. 48–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Wang, E. A. Hoffman, G. McLennan, L. V. Wang, M. Suter, and J. F. Meinel, “Development of the first bioluminescence ct scanner,” Radiology, vol. 229, p. 566, 2003. View at Google Scholar
  7. W. Cong, G. Wang, D. Kumar et al., “Practical reconstruction method for bioluminescence tomography,” Optics Express, vol. 13, no. 18, pp. 6756–6771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. G. Wang, X. Qian, W. Cong et al., “Recent development in bioluminescence tomography,” Current Medical Imaging Reviews, vol. 2, no. 4, pp. 453–457, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Medical Physics, vol. 31, no. 8, pp. 2289–2299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. A. J. Chaudhari, F. Darvas, J. R. Bading et al., “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Physics in Medicine and Biology, vol. 50, no. 23, pp. 5421–5441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. X. Cong and G. Wang, “Multispectral bioluminescence tomography: methodology and simulation,” International Journal of Biomedical Imaging, vol. 2006, Article ID 57614, 7 pages, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Dehghani, S. C. Davis, and B. W. Pogue, “Spectrally resolved bioluminescence tomography using the reciprocity approach,” Medical Physics, vol. 35, no. 11, pp. 4863–4871, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Feng, K. Jia, G. Yan et al., “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Optics Express, vol. 16, no. 20, pp. 15640–15654, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” International Journal of Biomedical Imaging, vol. 2010, Article ID 291874, 11 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Lv, J. Tian, W. Cong et al., “A multilevel adaptive finite element algorithm for bioluminescence tomography,” Optics Express, vol. 14, no. 18, pp. 8211–8223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. R. Han, J. Liang, X. Qu et al., “A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography,” Optics Express, vol. 17, no. 17, pp. 14481–14494, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Optics Express, vol. 15, no. 26, pp. 18300–18317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. D. L. Donoho, “Compressed sensing,” IEEE Transactions on Information Theory, vol. 52, no. 4, pp. 1289–1306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. L. V. Wang and H. Wu, Biomedical Optics: Principles and Imaging, chapter 4, John Wiley, New York, NY, USA, 2007.
  20. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics, vol. 22, no. 11, pp. 1779–1792, 1995. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Bangerth, Adaptive finite element methods for the identification of distributed parameters in partial differential equations, Ph.D. thesis, University of Heidelberg, 2002.
  22. A. N. Tikhonov and V. Y. Aresenin, Solutions of Ill-Posed Problems, V. H. Winston & Sons, Washington, DC, USA, 1977.
  23. J. G. Nagy, K. Palmer, and L. Perrone, “Iterative methods for image deblurring: a Matlab object-oriented approach,” Numerical Algorithms, vol. 36, no. 1, pp. 73–93, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen, “Tomographic inversion using 1-norm regularization of wavelet coefficients,” Geophysical Journal International, vol. 170, no. 1, pp. 359–370, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-point method for large-scale 1-regularized least squares,” IEEE Journal on Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Optics Express, vol. 15, no. 18, pp. 11095–11116, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Physics in Medicine and Biology, vol. 52, no. 3, pp. 577–587, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Physics in Medicine and Biology, vol. 50, no. 17, pp. 4225–4241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Wang, W. Cong, K. Durairaj et al., “In vivo mouse studies with bioluminescence tomography,” Optics Express, vol. 14, no. 17, pp. 7801–7809, 2006. View at Publisher · View at Google Scholar · View at Scopus