Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012 (2012), Article ID 382806, 9 pages
http://dx.doi.org/10.1155/2012/382806
Research Article

Automated Lobe-Based Airway Labeling

1Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
2Department of of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
3Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
4Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
5Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA

Received 6 April 2012; Revised 6 September 2012; Accepted 9 September 2012

Academic Editor: Ayman El-Baz

Copyright © 2012 Suicheng Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Zaas, R. Wise, C. Wiener, and Longcope Spirometry Invetigation Team, “Airway obstruction is common but unsuspected in patients admitted to a general medicine service,” Chest, vol. 125, no. 1, pp. 106–111, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. Lung Disease Data, 2008, http://www.lungusa.org/assets/documents/publications/lung-disease-data/LDD_2008.pdf.
  3. I. Orlandi, C. Moroni, G. Camiciottoli et al., “Chronic obstructive pulmonary disease: thin-section CT measurement of airway wall thickness and lung attenuation,” Radiology, vol. 234, no. 2, pp. 604–610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. J. C. Hogg, F. Chu, S. Utokaparch et al., “The nature of small-airway obstruction in chronic obstructive pulmonary disease,” The New England Journal of Medicine, vol. 350, no. 26, pp. 2645–2653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Hasegawa, Y. Nasuhara, Y. Onodera et al., “Airflow limitation and airway dimensions in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 12, pp. 1309–1315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. S. B. Fain, J. C. Granroth, J. D. Newell et al., “Variability of quantitative CT airway measures of remodeling,” American Journal of Respiratory and Critical Care Medicine, vol. 179, p. A5575, 2009. View at Google Scholar
  7. J. Pu, S. Gu, S. Liu et al., “CT based computerized identification and analysis of human airways: a review,” Medical Physics, vol. 39, no. 5, pp. 2603–2416, 2012. View at Publisher · View at Google Scholar
  8. V. Modgil, S. Das, and R. Suri, “Anomalous lobar pattern of right lung: a case report,” International Journal of Morphology, vol. 24, no. 1, pp. 5–6, 2006. View at Google Scholar · View at Scopus
  9. E. M. van Rikxoort, B. van Ginneken, M. Klik, and M. Prokop, “Supervised enhancement filters: application to fissure detection in chest CT scans,” IEEE Transactions on Medical Imaging, vol. 27, no. 1, pp. 1–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Ukil and J. M. Reinhardt, “Anatomy-guided lung lobe segmentation in X-ray CT images,” IEEE Transactions on Medical Imaging, vol. 28, no. 2, pp. 202–214, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. E. M. van Rikxoort, B. Hoop, S. van de Vorst, M. Prokop, and B. van Ginneken, “Automatic segmentation of pulmonary segments from volumetric chest CT scans,” IEEE Transactions on Medical Imaging, vol. 28, no. 4, pp. 621–630, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Pu, B. Zheng, J. K. Leader et al., “Pulmonary lobe segmentation in CT examinations using implicit surface fitting,” IEEE Transactions on Medical Imaging, vol. 28, no. 12, pp. 1986–1996, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Tschirren, G. McLennan, K. Palágyi, E. A. Hoffman, and M. Sonka, “Matching and anatomical labeling of human airway tree,” IEEE Transactions on Medical Imaging, vol. 24, no. 12, pp. 1540–1547, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Kitaoka, Y. Park, J. Tschirren et al., “Automated nomenclature labeling of the bronchial tree in 3D-CT lung images,” Lecture Notes in Computer Science, vol. 2489, pp. 1–11, 2002. View at Publisher · View at Google Scholar
  15. M. W. Graham and W. E. Higgins, “Optimal graph-theoretic approach to 3D anatomical tree matching,” in Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, pp. 109–112, Arlington, Va, USA, April 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. B. van Ginneken, W. Baggerman, and E. van Rikxoort, “Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans,” in Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI '08), vol. 5241 of Lecture Notes in Computer Science, pp. 219–226, New York, NY, USA, September 2008. View at Publisher · View at Google Scholar
  17. A. Feragen, J. Petersen, M. Owen et al., “A hierarchical scheme for geodesic anatomical labeling of airway trees,” in Proceedings of the 15th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI '12), Nice, France, October 2012.
  18. N. D. Cornea, D. Silver, X. Yuan, and R. Balasubramanian, “Computing hierarchical curve-skeletons of 3D objects,” The Visual Computer, vol. 21, no. 11, pp. 945–955, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton properties, applications, and algorithms,” IEEE Transactions on Visualization and Computer Graphics, vol. 13, no. 3, pp. 530–548, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Pu, C. Fuhrman, W. F. Good, F. C. Sciurba, and D. Gur, “A differential geometric approach to automated segmentation of human airway tree,” IEEE Transactions on Medical Imaging, vol. 30, no. 2, pp. 266–278, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Palágyi, J. Tschirren, and M. Sonka, “Quantitative analysis of intrathoracic airway trees: methods and validation,” in Proceedings of the 18th International Conference on Information Processing in Medical Imaging (IPMI '03), vol. 2732 of Lecture Notes in Computer Science, pp. 222–233, Ambleside, UK, 2003.
  22. K. Palágyi, J. Tschirren, and M. Sonka, “Quantitative analysis of threedimensional tubular tree structures,” in Medical Imaging, vol. 5032 of Proceedings of SPIE, San Diego, Calif, USA, February 2003. View at Publisher · View at Google Scholar
  23. N. Gagvani and D. Silver, “Parameter-controlled volume thinning,” Graphical Models and Image Processing, vol. 61, no. 3, pp. 149–164, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Pu, J. K. Leader, X. Meng et al., “Three-dimensional airway tree architecture and pulmonary function,” Academic Radiology, vol. 19, no. 11, pp. 1395–1401, 2012. View at Publisher · View at Google Scholar