Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012, Article ID 734734, 11 pages
http://dx.doi.org/10.1155/2012/734734
Research Article

Quantification of Lung Damage in an Elastase-Induced Mouse Model of Emphysema

1Cancer Imaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
2Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain

Received 29 July 2012; Accepted 4 October 2012

Academic Editor: Ayman El-Baz

Copyright © 2012 Arrate Muñoz-Barrutia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Objective. To define the sensitivity of microcomputed tomography- (micro-CT-) derived descriptors for the quantification of lung damage caused by elastase instillation. Materials and Methods. The lungs of 30 elastase treated and 30 control A/J mice were analyzed 1, 6, 12, and 24 hours and 7 and 17 days after elastase instillation using (i) breath-hold-gated micro-CT, (ii) pulmonary function tests (PFTs), (iii) RT-PCR for RNA cytokine expression, and (iv) histomorphometry. For the latter, an automatic, parallel software toolset was implemented that computes the airspace enlargement descriptors: mean linear intercept and weighted means of airspace diameters (, , and ). A Support Vector Classifier was trained and tested based on three nonhistological descriptors using as ground truth. Results. detected statistically significant differences between the groups at all time points. Furthermore, at 1 hour (24 hours) was significantly lower than at 24 hours (7 days). The classifier trained on the micro-CT-derived descriptors achieves an area under the curve (AUC) of 0.95 well above the others (PFTS AUC = 0.71; cytokine AUC = 0.88). Conclusion. Micro-CT-derived descriptors are more sensitive than the other methods compared, to detect in vivo early signs of the disease.