Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012, Article ID 734734, 11 pages
http://dx.doi.org/10.1155/2012/734734
Research Article

Quantification of Lung Damage in an Elastase-Induced Mouse Model of Emphysema

1Cancer Imaging Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain
2Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008 Pamplona, Spain

Received 29 July 2012; Accepted 4 October 2012

Academic Editor: Ayman El-Baz

Copyright © 2012 Arrate Muñoz-Barrutia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Halbert, S. Isonaka, D. George, and A. Iqbal, “Interpreting COPD prevalence estimates: what is the true burden of disease?” Chest, vol. 123, no. 5, pp. 1684–1692, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. G. L. Snider, J. Kleinerman, W. M. Thurlbeck, and Z. H. Bengali, “The definition of emphysema. Report of a National Heart, Lung and Blood Institute, Division of Lung Diseases workshop,” American Review of Respiratory Disease, vol. 132, no. 1, pp. 182–185, 1985. View at Google Scholar
  3. B. R. Celli, W. MacNee, A. Agusti et al., “Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper,” European Respiratory Journal, vol. 23, no. 6, pp. 932–946, 2004. View at Publisher · View at Google Scholar
  4. G. L. Snider, “Emphysema: the first two centuries and beyond: a historical overview, with suggestions for future research: part 1,” American Review of Respiratory Disease, vol. 146, no. 5, part 1, pp. 1334–1344, 1992. View at Google Scholar · View at Scopus
  5. D. M. Mannino and A. S. Buist, “Global burden of COPD: risk factors, prevalence, and future trends,” The Lancet, vol. 370, no. 9589, pp. 765–773, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. D. Shapiro, “Animal models for COPD,” Chest, vol. 117, no. 5, supplement 1, pp. 223S–227S, 2000. View at Google Scholar · View at Scopus
  7. M. S. Dunnill, “Quantitative methods in the study of pulmonary pathology,” Thorax, vol. 17, no. 4, pp. 320–328, 1962. View at Publisher · View at Google Scholar
  8. A. A. Robbesom, E. M. M. Versteeg, J. H. Veerkamp et al., “Morphological quantification of emphysema in small human lung specimens: comparison of methods and relation with clinical data,” Modern Pathology, vol. 16, no. 1, pp. 1–7, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. E. R. Weibel, C. C. W. Hsia, and M. Ochs, “How much is there really? Why stereology is essential in lung morphometry,” Journal of Applied Physiology, vol. 102, no. 1, pp. 459–467, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Parameswaran, A. Majumdar, S. Ito, A. M. Alencar, and B. Suki, “Quantitative characterization of airspace enlargement in emphysema,” Journal of Applied Physiology, vol. 100, no. 1, pp. 186–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. E. Jacob, J. P. Carson, K. M. Gideon, B. G. Amidan, C. L. Smith, and K. M. Lee, “Comparison of two quantitative methods of discerning, airspace enlargement in smoke-exposed mice,” PLoS ONE, vol. 4, no. 8, Article ID e6670, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Artaechevarria, D. Blanco, G. de Biurrun et al., “Evaluation of micro-CT for emphysema assessment in mice: comparison with non-radiological techniques,” European Radiology, vol. 21, no. 5, pp. 954–962, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. K. A. Johnson, “Imaging techniques for small animal imaging models of pulmonary disease: micro-CT,” Toxicologic Pathology, vol. 35, no. 1, pp. 59–64, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. F. Lakatos, H. A. Burgess, T. H. Thatcher et al., “Oropharyngeal aspiration of a silica suspension produces a superior model of silicosis in the mouse when compared to intratracheal instillation,” Experimental Lung Research, vol. 32, no. 5, pp. 181–199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J. H. T. Bates and C. G. Irvin, “Measuring lung function in mice: the phenotyping uncertainty principle,” Journal of Applied Physiology, vol. 94, no. 4, pp. 1297–1306, 2003. View at Google Scholar · View at Scopus
  16. S. Hu, E. A. Hoffman, and J. M. Reinhardt, “Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images,” IEEE Transactions on Medical Imaging, vol. 20, no. 6, pp. 490–498, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Artaechevarria, D. Pérez-Martín, M. Ceresa et al., “Airway segmentation and analysis for the study of mouse models of lung disease using micro-CT,” Physics in Medicine and Biology, vol. 54, no. 22, pp. 7009–7024, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. P. J. Barnes, “The cytokine network in chronic obstructive pulmonary disease,” American Journal of Respiratory Cell and Molecular Biology, vol. 41, no. 6, pp. 631–638, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979. View at Publisher · View at Google Scholar
  20. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics, vol. 25, no. 11, pp. 1463–1465, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. P. L. Rosin, “Unimodal thresholding,” Pattern Recognition, vol. 34, no. 11, pp. 2083–2096, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Clementini, P. Di Felice, and P. van Oosterom, “A small set of formal topological relationships suitable for end-user interaction,” in Advances in Spatial Databases, pp. 277–295, Springer, 1993. View at Google Scholar
  23. M. Egenhofer and J. Herring, “Categorizing binary topological relations between regions, lines, and points in geographic databases,” Tech. Rep. 90-12, National Center for Geographic Information and Analysis, University of California, 1990. View at Google Scholar
  24. Shapely Phyton package, http://toblerity.github.com/shapely/.
  25. The R. Development Core Team, “An introduction to R,” 2012, http://cran.es.r-project.org/.
  26. X. Artaechevarria, D. Blanco, D. Pérez-Martín et al., “Longitudinal study of a mouse model of chronic pulmonary inflammation using breath hold gated micro-CT,” European Radiology, vol. 20, no. 11, pp. 2600–2608, 2010. View at Publisher · View at Google Scholar · View at Scopus