Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012, Article ID 765649, 13 pages
http://dx.doi.org/10.1155/2012/765649
Research Article

A New GLLD Operator for Mass Detection in Digital Mammograms

1Computer Imaging and Electronic System Group, CEM Laboratory, Department of Electrical Engineering, Sfax Engineering School, University of Sfax, P.O. Box 1169, 3038 Sfax, Tunisia
2El Farabi Radiology Center, 14 Janvier Avenue, 3000 Sfax, Tunisia

Received 19 July 2012; Revised 12 November 2012; Accepted 21 November 2012

Academic Editor: Juan Ruiz-Alzola

Copyright © 2012 N. Gargouri et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Eurostat, “Health statistics—Atlas on mortality in the European Union,” European Commission, 2002.
  2. American Cancer Society, “Cancer Facts and Figures 2012,” American Cancer Society, Atlanta, Ga, USA, 2012.
  3. J. Esteve, A. Kricker, J. Ferlay, and D. Parkin, “Facts and figures of cancer in the European community,” International Agency for Research on Cancer, Lyon, France, 1993.
  4. N. Mourali, “Haro sur la première cause de mortalité dans le monde,” Livret Santé. 2010.
  5. E. A. Sickles, “Breast cancer screening outcomes in women ages 40–49: clinical experience with service screening using modern mammography,” Journal of the National Cancer Institute. Monographs, no. 22, pp. 99–104, 1997. View at Google Scholar · View at Scopus
  6. W. Qian, X. Sun, D. Song, and R. A. lark, “Digital mammography—wavelet transform and Kalman-filtering neural network in mass segmentation and detection,” Academic Radiology, vol. 8, no. 11, pp. 1074–1082, 2001. View at Google Scholar
  7. I. Christoyianni, A. Koutras, E. Dermatas, and G. Kokkinakis, “Computer aided diagnosis of breast cancer in digitized mammograms,” Computerized Medical Imaging and Graphics, vol. 26, no. 5, pp. 309–319, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Oliver, J. Martí, R. Martí, A. Bosch, and J. Freixenet, “A new approach to the classification of mammographic masses and normal breast tissue,” in Proceedings of the IAPR International Conference on Pattern Recognition, vol. 4, pp. 707–710, 2006.
  9. A. Oliver, X. Lladó, J. Martí, and R. Martí, “False positive reduction in breast mass detection using two-dimensional PCA,” Lecture Notes on Computer Science, pp. 154–161, 2007. View at Google Scholar
  10. C. Varela, P. G. Tahoces, A. J. Méndez, M. Souto, and J. J. Vidal, “Computerized detection of breast masses in digitized mammograms,” Computers in Biology and Medicine, no. 2, pp. 214–226, 2007. View at Google Scholar
  11. O. M. Leonardo, B. J. Geraldo, O. C. S. Arist, C. P. Anselmo, and G. Marcelo, “Detection of masses in digital mammograms using K-means and support vector machine,” ELCVIA, vol. 8, no. 2, pp. 39–50, 2009. View at Google Scholar
  12. Y. H. Chang, L. A. Hardesty, C. M. Hakim et al., “Knowledge-based computer-aided detection of masses on digitized mammograms: a preliminary assessment,” Medical Physics, vol. 28, no. 4, pp. 455–461, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D. Tourassi, B. Harrawood, S. Singh, J. Y. Lo, and C. E. Floyd, “Evaluation of information theoretic similarity measures for content-based retrieval and detection of masses in mammograms,” IEEE Transactions on Medical Imaging, vol. 34, no. 1, pp. 140–150, 2007. View at Google Scholar
  14. P. M. Vacek, B. M. Geller, D. L. Weaver, and R. S. Foster, “Increased mammography use and its impact on earlier breast cancer detection in Vermont, 1975–1999,” Cancer, vol. 94, no. 8, pp. 2160–2168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. F. Winsberg, M. Elkin, J. Macy, V. Bordaz, and W. Weymouth, “Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis,” Radiology, vol. 89, no. 2, pp. 211–215, 1967. View at Google Scholar
  16. T. W. Freer and M. J. Ulissey, “Screening mammography with computer-aided detection: prospective study of 12,860 patients in a community breast center,” Radiology, vol. 220, no. 3, pp. 781–786, 2001. View at Google Scholar · View at Scopus
  17. S. van Engeland and N. Karssemeijer, “Combining twomammographic projections in a computer aided mass detection method,” Medical Physics, vol. 34, pp. 898–905, 2007. View at Google Scholar
  18. A. Oliver, X. Lladó, J. Freixenet, and J. Martí, “False positive reduction in mammographic mass detection using local binary patterns,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 286–293, 2007.
  19. J. Zhang and T. Tan, “Brief review of invariant texture analysismethods,” Pattern Recognition, vol. 35, no. 3, pp. 735–747, 2002. View at Google Scholar
  20. R. M. Rangayyan, F. J. Ayres, and J. E. Leo Desautels, “A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs,” Journal of the Franklin Institute, vol. 344, no. 3-4, pp. 312–348, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Rojas and A. Nandi, “Detection of masses in mammograms via statistically based enhancement, multilevel-thresholding segmentation, and region selection,” Computerized Medical Imaging and Graphics, vol. 32, no. 4, pp. 304–315, 2008. View at Google Scholar
  22. J. A. Hanley and B. J. McNeil, “The meaning and use of the area under a receiver operating characteristic (ROC) curve,” Radiology, vol. 143, no. 1, pp. 29–36, 1982. View at Google Scholar · View at Scopus
  23. R. M. Haralik, K. Shanmugam, and I. Dinstein, “Texture features for image classification,” IEEE Transactions on Systems, vol. 3, pp. 610–621, 1973. View at Google Scholar
  24. T. Randen and J. H. Husy, “Filtering for texture classification: a comparative study,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 291–310, 1999. View at Google Scholar
  25. J. L. Chen and A. Kundu, “Rotation and gray scale transform invariant texture identification using wavelet decomposition and hidden Markov model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 2, pp. 208–214, 1994. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Deng and D. A. Clausi, “Gaussian VZ-MRF rotation-invariant features for image classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26, pp. 951–955, 2004. View at Google Scholar
  27. M. Varma and A. Zisserman, “A statistical approach to texture classification from single images,” International Journal of Computer Vision, vol. 62, no. 1-2, pp. 61–81, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Varma and A. Zisserman, “Texture classification: are filter banks necessary,” in Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 691–698, 2003.
  29. T. Ojala, M. Pietikäinen, and T. Mäenpää, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Ojala, M. Pietikäinen, and D. Harwood, “A comparative study of texture measures with classification based on featured distributions,” Pattern Recognition, vol. 29, pp. 51–59, 1996. View at Google Scholar
  31. T. Ojala, K. Valkealahti, E. Oja, and M. Pietikäinen, “Texture discrimination with multidimensional distributions of signed gray-level differences,” Pattern Recognition, vol. 34, no. 3, pp. 727–739, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. T. Ahonen, J. Matas, C. He, and M. Pietikäinen, “Rotation invariant image description with local binary pattern histogram Fourier features,” in Proceedings of the Scandinavian Conference on Image Analysis, vol. 5575 of Lecture Notes in Computer Science, pp. 61–70, Springer, Berlin, Germany, 2009.
  33. M. Varma and A. Zisserman, “Texture classification: are filter banks necessary?” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 691–698, June 2003. View at Scopus
  34. M. Varma and A. Zisserrman, “A statistical approach to material classification using image patch examplars,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 2032–2047, 2009. View at Google Scholar
  35. V. Vapanick, The Nature of Statistical Learning Theory, Springer, New York, NY, USA, 1995.
  36. T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer, 2009.
  37. D. E. Rumelhart and G. E. Hinton, in Learning Internal Representations By Error Propagation, Parallel Distributed Processing, vol. 1, pp. 318–362, MIT Press, Cambridge, Mass, USA, 1986.
  38. J. Padmavati, “A comparative study on breast cancer prediction using RBF and MLP,” International Journal of Scientific and Engineering Research, vol. 2, no. 1, 2011. View at Google Scholar
  39. M. Oravec and J. Pavlovicová, “Face Recognition methods based on feedforward neural networks, principal component analysis and self-organizing map,” Radio Engineering, vol. 16, no. 1, pp. 51–57, 2007. View at Google Scholar
  40. D. K. M. Heath and K. W. Bowyer, “Current status of the digital database for screening mammography,” in Proceedings of the 4th International Workshop on Digital Mammography, 1998.
  41. E. Song, S. Xu, X. Xu et al., “Hybrid segmentation of mass in mammograms using template matching and dynamic programming,” Academic Radiology, vol. 17, no. 11, pp. 457–460, 2010. View at Google Scholar