Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2012, Article ID 872783, 17 pages
http://dx.doi.org/10.1155/2012/872783
Research Article

Serial FEM/XFEM-Based Update of Preoperative Brain Images Using Intraoperative MRI

1Department of Electrical Engineering and Computer Science, University of Liège, 4000 Liège, Belgium
2Department of Aerospace and Mechanical Engineering, University of Liège, 4000 Liège, Belgium
3Computational Radiology Laboratory, Department of Radiology Children's Hospital Boston, Harvard Medical School, Boston, MA 02115, USA
4Department of Neurosurgery, University of Utrecht Medical Center, 3584 CX Utrecht, The Netherlands

Received 30 June 2011; Revised 18 September 2011; Accepted 23 September 2011

Academic Editor: Shan Zhao

Copyright © 2012 Lara M. Vigneron et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. M. Comeau, A. F. Sadikot, A. Fenster, and T. M. Peters, “Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery,” Medical Physics, vol. 27, no. 4, pp. 787–800, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Hastreiter, C. Rezk-Salama, G. Soza et al., “Strategies for brain shift evaluation,” Medical Image Analysis, vol. 8, no. 4, pp. 447–464, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Dickhaus, K. A. Ganser, A. Staubert et al., “Quantification of brain shift effects by MR-imaging,” in Proceedings of the 1997 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 491–494, November 1997. View at Scopus
  4. T. Hartkens, D. L. G. Hill, A. D. Castellano-Smith et al., “Measurement and analysis of brain deformation during neurosurgery,” IEEE Transactions on Medical Imaging, vol. 22, no. 1, pp. 82–92, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Nabavi, B. P. McL, D. T. Gering et al., “Serial intraoperative magnetic resonance imaging of brain shift,” Neurosurgery, vol. 48, no. 4, pp. 787–798, 2001. View at Google Scholar · View at Scopus
  6. M. A. Audette, K. Siddiqi, F. P. Ferrie, and T. M. Peters, “An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery,” Computer Vision and Image Understanding, vol. 89, no. 2-3, pp. 226–251, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. Archip, O. Clatz, S. Whalen et al., “Non-rigid alignment of pre-operative MRI, fMRI, and DT-MRI with intra-operative MRI for enhanced visualization and navigation in image-guided neurosurgery,” NeuroImage, vol. 35, no. 2, pp. 609–624, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Jannin, X. Morandi, O. J. Fleig et al., “Integration of sulcal and functional information for multimodal neuronavigation,” Journal of Neurosurgery, vol. 96, no. 4, pp. 713–723, 2002. View at Google Scholar · View at Scopus
  9. A. Tei, F. Talos, A. Bharatha et al., “Tracking volumetric brain deformations during image guided neurosurgery,” in VISIM: Information Retrieval and Exploration in Large Medical Image Collections, in Conjunction with (MICCAI '01), 2001.
  10. S. K. Warfield, F. Talos, C. Kemper et al., “Augmenting intraoperative MRI with preoperative fMRI and DTI by biomechanical simulation of brain deformation,” in Medical Imaging 2003: Visualization, Image-Guided Procedures, and Display, vol. 5029 of Proceedings of SPIE, San Diego, Calif, USA, February 2003. View at Publisher · View at Google Scholar
  11. M. Bucki and Y. Payan, “Framework and bio-mechanical model for a per-operative imageguided neuronavigator including ‘brain-shift’ compensation,” in Proceedings of the 2nd Workshop on Computer Assisted Diagnosis and Surgery, March 2006.
  12. O. Clatz, H. Delingette, I. F. Talos et al., “Robust nonrigid registration to capture brain shift from intraoperative MRI,” IEEE Transactions on Medical Imaging, vol. 24, no. 11, pp. 1417–1427, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Ferrant, A. Nabavi, B. Macq et al., “Serial registration of intraoperative MR images of the brain,” Medical Image Analysis, vol. 6, no. 4, pp. 337–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Hagemann, K. Rohr, and H. S. Stiehl, “Coupling of fluid and elastic models for biomechanical simulations of brain deformations using FEM,” Medical Image Analysis, vol. 6, no. 4, pp. 375–388, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. C. A. Kemper, I.-F. Talos, A. Golby et al., “An anisotropic material model for image guided neurosurgery,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '04), vol. 3217, pp. 267–275, 2004.
  16. K. E. Lunn, K. D. Paulsen, D. W. Roberts, F. E. Kennedy, A. Hartov, and J. D. West, “Displacement estimation with co-registered ultrasound for image guided neurosurgery: a quantitative in vivo porcine study,” IEEE Transactions on Medical Imaging, vol. 22, no. 11, pp. 1358–1368, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. M. I. Miga, K. D. Paulsen, P. J. Hoopes, F. E. Kennedy, A. Hartov, and D. W. Roberts, “In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery,” IEEE Transactions on Biomedical Engineering, vol. 47, no. 2, pp. 266–273, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. K. D. Paulsen, M. I. Miga, F. E. Kennedy, P. Jack Hoopes, A. Hartov, and D. W. Roberts, “A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery,” IEEE Transactions on Biomedical Engineering, vol. 46, no. 2, pp. 213–225, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Rexilius, S. K. Warfield, C. R. G. Guttmann et al., “A novel nonrigid registration algorithm and applications,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), pp. 923–931, 2001.
  20. D. W. Roberts, M. I. Miga, A. Hartov et al., “Intraoperatively updated neuroimaging using brain modeling and sparse data,” Neurosurgery, vol. 45, no. 5, pp. 1199–1207, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. O. Škrinjar, A. Nabavi, and J. Duncan, “Model-driven brain shift compensation,” Medical Image Analysis, vol. 6, no. 4, pp. 361–373, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Ji, A. Hartov, D. Roberts, and K. Paulsen, “Data assimilation using a gradient descent method for estimation of intraoperative brain deformation,” Medical Image Analysis, vol. 13, no. 5, pp. 744–756, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. H. Sun, K. E. Lunn, H. Farid et al., “Stereopsis-guided brain shift compensation,” IEEE Transactions on Medical Imaging, vol. 24, no. 8, pp. 1039–1052, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Warfield, S. J. Haker, I. F. Talos et al., “Capturing intraoperative deformations: research experience at Brigham and Women's hospital,” Medical Image Analysis, vol. 9, no. 2, pp. 145–162, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. A. Wittek, K. Miller, R. Kikinis, and S. K. Warfield, “Patient-specific model of brain deformation: application to medical image registration,” Journal of Biomechanics, vol. 40, no. 4, pp. 919–929, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. Cohen-Adad, P. Paul, X. Morandi, and P. Jannin, “Knowledge modeling in image-guided neurosurgery: application in understanding intraoperative brain shift,” in Proceedings of the Medical Imaging: Visualization, Image-Guided Procedures and Display, vol. 6141 of Proceedings of SPIE, 2006. View at Publisher · View at Google Scholar
  27. S. K. Kyriacou, A. Mohamed, K. Miller, and S. Neff, “Brain mechanics for neurosurgery: modeling issues,” Biomechanics and Modeling in Mechanobiology, vol. 1, no. 2, pp. 151–164, 2002. View at Google Scholar
  28. K. Miller, A. Wittek, G. Joldes et al., “Modelling brain deformations for computer-integrated neurosurgery,” International Journal for Numerical Methods in Biomedical Engineering, vol. 26, no. 1, pp. 117–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. H.-W. Nienhuys and F. A. van der Stappen, “A surgery simulation supporting cuts and finite element deformation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), vol. 2208, pp. 153–160, 2001.
  30. D. Serby, M. Harders, and G. Székely, “A new approach to cutting into finite element models,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '01), vol. 2208, pp. 425–433, 2001.
  31. D. Steinemann, M. A. Harders, M. Gross, and G. Székely, “Hybrid cutting of deformable solids,” in Proceedings of the IEEE Computer Society Conference on Virtual Reality, pp. 35–42, 2006.
  32. D. Bielser, P. Glardon, M. Teschner, and M. Gross, “A state machine for real-time cutting of tetrahedral meshes,” Graphical Models, vol. 66, no. 6, pp. 398–417, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Ganovelli, P. Cignoni, C. Montani, and R. Scopigno, “Multiresolution model for soft objects supporting interactive cuts and lacerations,” Computer Graphics Forum, vol. 19, no. 3, pp. 271–281, 2000. View at Google Scholar · View at Scopus
  34. A. Mor and T. Kanade, “Modifying soft tissue models: progressive cutting with minimal new element creation,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '00), vol. 1935, pp. 598–607, 2000.
  35. H.-W. Nienhuys, Cutting in Deformable Objects, Ph.D. thesis, Institute for Information and Computing Sciences, Utrecht University,, 2003.
  36. M. Duflot and H. Nguyen-Dang, “A meshless method with enriched weight functions for fatigue crack growth,” International Journal for Numerical Methods in Engineering, vol. 59, no. 14, pp. 1945–1961, 2004. View at Google Scholar · View at Scopus
  37. N. Moës, J. Dolbow, and T. Belytschko, “A finite element method for crack growth without remeshing,” International Journal for Numerical Methods in Engineering, vol. 46, no. 1, pp. 131–150, 1999. View at Google Scholar · View at Scopus
  38. Y. Abdelaziz and A. Hamouine, “A survey of the extended finite element,” Computers and Structures, vol. 86, no. 11-12, pp. 1141–1151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. L. M. Vigneron, M. P. Duflot, P. A. Robe, S. K. Warfield, and J. G. Verly, “2D XFEM-based modeling of retraction and successive resections for preoperative image update,” Computer Aided Surgery, vol. 14, no. 1–3, pp. 1–20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. L. M. Vigneron, R. C. Boman, J. P. Ponthot, P. A. Robe, S. K. Warfield, and J. G. Verly, “Enhanced FEM-based modeling of brain shift deformation in image-guided neurosurgery,” Journal of Computational and Applied Mathematics, vol. 234, no. 7, pp. 2046–2053, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. L. M. Vigneron, R. C. Boman, J.-P. Ponthot, P. A. Robe, S. K. Warfield, and J. G. Verly, “3D FEM/XFEM-based biomechanical brain modeling for preoperative image update,” in Workshop “Computational Biomechanics for Medicine II”, at the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '07), 2007.
  42. A. Hagemann, K. Rohr, H. S. Stiehl, U. Spetzger, and J. M. Gilsbach, “Biomechanical modeling of the human head for physically based, nonrigid image registration,” IEEE Transactions on Medical Imaging, vol. 18, no. 10, pp. 875–884, 1999. View at Google Scholar · View at Scopus
  43. M.-P. Dubuisson and A. K. Jain, “A modified Hausdorff distance for object matching,” in Proceedings of the 12th International Conference on Pattern Recognition (IAPR '94), pp. 566–568, 1994.
  44. M. I. Miga, D. W. Roberts, F. E. Kennedy et al., “Modeling of retraction and resection for intraoperative updating of images,” Neurosurgery, vol. 49, no. 1, pp. 75–85, 2001. View at Google Scholar · View at Scopus
  45. C. Forest, H. Delingette, and N. Ayache, “Cutting simulation of manifold volumetric meshes,” in Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '02), vol. 2488, pp. 235–244, 2002.
  46. C. Forest, H. Delingette, and N. Ayache, “Removing tetrahedra from manifold tetrahedralisation: application to real-time surgical simulation,” Medical Image Analysis, vol. 9, no. 2, pp. 113–122, 2005. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Ferrant, Physics-based deformable modeling of volumes and surfaces for medical image registration, segmentation and visualization, Ph.D. thesis, Université Catholique de Louvain, Telecommunications Laboratory, Louvain-la-Neuve, Belgium, 2001.
  48. M. Ferrant, A. Nabavi, B. Macq, F. A. Jolesz, R. Kikinis, and S. K. Warfield, “Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model,” IEEE Transactions on Medical Imaging, vol. 20, no. 12, pp. 1384–1397, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Jeřábková and T. Kuhlen, “Stable cutting of deformable objects in virtual environments using XFEM,” IEEE Computer Graphics and Applications, vol. 29, no. 2, pp. 61–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  50. A. A. Devalkeneer, P. A. Robe, J. G. Verly, and C. L. M. Phillips, “Generalized expectation-maximization segmentation of brain MR images,” in Medical Imaging 2006: Image Processing, vol. 6144 of Proceedings of SPIE, San Diego, Calif, USA, February 2006. View at Publisher · View at Google Scholar
  51. J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, and J. López-Krahe, “From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations,” Journal of Mathematical Imaging and Vision, vol. 5, no. 4, pp. 297–318, 1995. View at Publisher · View at Google Scholar
  52. S. K. Warfield, M. Kaus, F. A. Jolesz, and R. Kikinis, “Adaptive, template moderated, spatially varying statistical classification,” Medical Image Analysis, vol. 4, no. 1, pp. 43–55, 2000. View at Google Scholar · View at Scopus
  53. C. Geuzaine and J.-F. Remacle, “Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities,” International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309–1331, 2009. View at Google Scholar
  54. K. Miller and A. Wittek, “Neuroimage registration as displacement—zero traction problem of solid mechanics,” in Workshop “Computational Biomechanics for Medicine” at the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI '06), 2006.
  55. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321–331, 1988. View at Publisher · View at Google Scholar · View at Scopus
  56. C. Xu, D. L. Pham, and J. L. Prince, “Medical image segmentation using deformable models,” in Handbook of Medical Imaging, J. M. Fitzpatrick and M. Sonka, Eds., vol. 2, chapter: Medical Image Processing and Analysis, pp. 129–174, SPIE Press, Bellingham, Wash, USA, 2000. View at Google Scholar
  57. O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Butterworth Heinemann, Woburn, Mass, USA, 2000.
  58. N. Sukumar, N. Moës, B. Moran, and T. Belytschko, “Extended finite element method for three-dimensional crack modelling,” International Journal for Numerical Methods in Engineering, vol. 48, no. 11, pp. 1549–1570, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. J. E. Dolbow, An extended finite element method with discontinuous enrichment for applied mechanics, Ph.D. thesis, Northwestern University, 1999.
  60. N. Sukumar and J. H. Prévost, “Modeling quasi-static crack growth with the extended finite element method Part I: computer implementation,” International Journal of Solids and Structures, vol. 40, no. 26, pp. 7513–7537, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschko, “Modeling holes and inclusions by level sets in the extended finite-element method,” Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 46-47, pp. 6183–6200, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. K. E. Lunn, K. D. Paulsen, D. R. Lynch, D. W. Roberts, F. E. Kennedy, and A. Hartov, “Assimilating intraoperative data with brain shift modeling using the adjoint equations,” Medical Image Analysis, vol. 9, no. 3, pp. 281–293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, New York, NY, USA, 2000.
  64. K. Miller, G. Joldes, and A. Wittek, “New finite element algorithm for surgical simulation,” in Proceedings of the 2nd Workshop on Computer Assisted Diagnosis and Surgery, 2006.
  65. J. E. Dolbow and A. Devan, “Enrichment of enhanced assumed strain approximations for representing strong discontinuities: addressing volumetric incompressibility and the discontinuous patch test,” International Journal for Numerical Methods in Engineering, vol. 59, no. 1, pp. 47–67, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Legrain, N. Moës, and E. Verron, “Stress analysis around crack tips in finite strain problems using the eXtended finite element method,” International Journal for Numerical Methods in Engineering, vol. 63, no. 2, pp. 290–314, 2005. View at Publisher · View at Google Scholar · View at Scopus