Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2013, Article ID 343180, 14 pages
http://dx.doi.org/10.1155/2013/343180
Research Article

Antenna Modeling and Reconstruction Accuracy of Time Domain-Based Image Reconstruction in Microwave Tomography

1Biomedical Engineering Division, Department of Signal and Systems, Chalmers University of Technology, 41296 Gothenburg, Sweden
2Curtin Institute of Radio Astronomy (CIRA), ICRAR, Curtin University, Perth, WA 6102, Australia
3PRL, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, Australia

Received 18 September 2012; Revised 13 January 2013; Accepted 21 January 2013

Academic Editor: Kenji Suzuki

Copyright © 2013 Andreas Fhager et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. C. Fear, P. M. Meaney, and M. A. Stuchly, “Microwaves for breast cancer detection?” IEEE Potentials, vol. 22, no. 1, pp. 12–18, 2003. View at Google Scholar
  2. N. K. Nikolova, “Microwave imaging for breast cancer,” IEEE Microwave Magazine, vol. 12, no. 7, pp. 78–94, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. Klemm, I. Craddock, J. Leendertz, A. Preece, and R. Benjamin, “Experimental and clinical results of breast cancer detection using UWB microwave radar,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium, vol. 1–9, pp. 3014–3017, July 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. P. M. Meaney, M. W. Fanning, T. Raynolds et al., “Initial clinical experience with microwave breast imaging in women with normal mammography,” Academic Radiology, vol. 14, no. 2, pp. 207–218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. S. P. Poplack, T. D. Tosteson, W. A. Wells et al., “Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms,” Radiology, vol. 243, no. 2, pp. 350–359, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Shere, A. Preece, I. Craddock, J. Leendertz, and M. Klemm, “Multistatic radar: first trials of a new breast imaging modality,” Breast Cancer Research, vol. 11, supplement 2, article 05, 2009. View at Google Scholar
  7. Q. Fang, P. M. Meaney, and K. D. Paulsen, “Viable three-dimensional medical microwave tomography: theory and numerical experiments,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 2, pp. 449–458, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Rubæk, O. S. Kim, and P. Meincke, “Computational validation of a 3-D microwave imaging system for breast-cancer screening,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 2105–2115, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Y. Semenov, A. E. Bulyshev, A. Abubakar et al., “Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 7, pp. 2284–2293, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. D. W. Winters, J. D. Shea, P. Kosmas, B. D. van Veen, and S. C. Hagness, “Three-dimensional microwave breast imaging: dispersive dielectric properties estimation using patient-specific basis functions,” IEEE Transactions on Medical Imaging, vol. 28, no. 7, pp. 969–981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Q. Zhang and Q. H. Liu, “Three-dimensional nonlinear image reconstruction for microwave biomedical imaging,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 3, pp. 544–548, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Fhager, S. K. Padhi, and J. Howard, “3D image reconstruction in microwave tomography using an efficient FDTD model,” IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1353–1356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Taove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, Mass, USA, 3rd edition, 2005.
  14. Q. Fang, P. M. Meaney, S. D. Geimer, S. Y. Streltsov, and K. D. Paulsen, “Microwave image reconstruction from 3D fields coupled to 2D parameter estimation,” IEEE Transactions on Medical Imaging, vol. 23, pp. 475–484, 2004. View at Google Scholar
  15. C. T. Liauh, R. G. Hills, and R. B. Roemer, “Comparison of the adjoint and influence coefficient methods for solving the inverse hyperthermia problem,” Journal of Biomechanical Engineering, vol. 115, no. 1, pp. 63–71, 1993. View at Google Scholar · View at Scopus
  16. A. Fhager and M. Persson, “Comparison of two image reconstruction algorithms for microwave tomography,” Radio Science, vol. 40, no. 3, Article ID RS3017, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Fhager, P. Hashemzadeh, and M. Persson, “Reconstruction quality and spectral content of an electromagnetic time-domain inversion algorithm,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 8, pp. 1594–1604, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. M. Mäkinen, J. S. Juntunen, and M. A. Kivikoski, “An improved thin-wire model for FDTD,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 5, pp. 1245–1255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Juntunen, “Note on the S-parameter and input impedance extraction in antenna simulations using FDTD,” Microwave and Optical Technology Letters, vol. 28, pp. 8–11, 2001. View at Google Scholar
  20. O. P. M. Pekonen and J. Xu, “Rigorous analysis of circuit parameter extraction from an FDTD simulation excited with a resistive voltage source,” Microwave and Optical Technology Letters, vol. 12, no. 4, pp. 205–210, 1996. View at Google Scholar · View at Scopus
  21. S. Nordebo, A. Fhager, M. Gustafsson, and M. Persson, “Measured antenna response of a proposed microwave tomography system using an efficient 3-D FDTD model,” IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 689–692, 2008. View at Publisher · View at Google Scholar · View at Scopus