Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2013, Article ID 859746, 8 pages
http://dx.doi.org/10.1155/2013/859746
Research Article

Breast Tissue 3D Segmentation and Visualization on MRI

1School of Software, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China
2School of Computer Science & Technology, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China

Received 15 March 2013; Accepted 3 June 2013

Academic Editor: Zhenming Yuan

Copyright © 2013 Hong Song et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Raba, A. Oliver, J. Martí, M. Peracaula, and J. Espunya, “Breast segmentation with pectoral muscle suppression on digital mammograms,” in Proceedings of the 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA '05), pp. 471–478, Estoril, Portugal, June 2005. View at Scopus
  2. W. Chen, M. L. Giger, and U. Bick, “A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images,” Academic Radiology, vol. 13, no. 1, pp. 63–72, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. R. Kannan, S. Ramathilagam, and A. Sathya, “Robust fuzzy C-means in classifying breast tissue regions,” in Proceedings of the International Conference on Advances in Recent Technologies in Communication and Computing (ARTCom '09), pp. 543–545, October 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. P. Pathmanathan, “Predicting tumour location by simulating the deformation of the breast using nonlinear elasticity and the finite element method,” Wolfson College University of Oxford, 2006.
  5. K. Nie, J.-H. Chen, S. Chan et al., “Development of a quantitative method for analysis of breast density based on three-dimensional breast MRI,” Medical Physics, vol. 35, no. 12, pp. 5253–5262, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. W. E. Lorensen and H. E. Cline, “Marching Cubes: a high resolution 3D surface construction algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163–169, 1987. View at Google Scholar · View at Scopus
  7. M. Levoy, “Display of surfaces from volume data,” IEEE Computer Graphics and Applications, vol. 8, no. 5, pp. 29–37, 1988. View at Google Scholar · View at Scopus
  8. N. Max, “Optical models for direct volume rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 1, no. 2, pp. 99–108, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp factorization of the viewing transformation,” in Proceedings of the ACM Computer Graphics (SIGGRAPH '94), pp. 451–458, July 1994.
  10. P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 629–639, 1990. View at Publisher · View at Google Scholar · View at Scopus
  11. R. O. Duda, P. E. Har, and D. G. Stork, Pattern Classification, Wiley-Interscience, New York, NY, USA, 2nd edition, 2001.
  12. D. Zhang, “Kernel-based associative memories, clustering algorithms and their applications,” Nanjing University of Aeronautics and Astronautics, 2004 (Chinese).
  13. D. Q. Zhang, “Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation,” in Proceedings of the International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2189–2192. View at Publisher · View at Google Scholar
  14. B. Wang, Q. Zhi, Z. Zhang, G. Geng, and M. Zhou, “Computation of center of mass for gray level image based on differential moments factor,” Journal of Computer-Aided Design and Computer Graphics, vol. 16, no. 10, pp. 1360–1365, 2004 (Chinese). View at Google Scholar · View at Scopus
  15. K. Engel, M. Hadwiger, and J. M. Kniss, “Real-time volume graphics,” in Proceedings of the ACM Computer Graphics (SIGGRAPH '04), article 29, 2004.
  16. G. Kindlmann and J. W. Durkin, “Semi-automatic generation of transfer functions for direct volume rendering,” in Proceedings of the IEEE Symposium on Volume Visualization, pp. 79–86, Research Triangle Park, NC, USA, 1998.