Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomedical Imaging
Volume 2013, Article ID 936593, 9 pages
http://dx.doi.org/10.1155/2013/936593
Research Article

Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture

1UNC and NCSU Joint Department of Biomedical Engineering, 304 Taylor Hall, 109 Mason Farm Road, Chapel Hill, NC 27599-6136, USA
2Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, ON, Canada M4N 3M5

Received 22 March 2013; Accepted 18 June 2013

Academic Editor: Jun Zhao

Copyright © 2013 Ryan C. Gessner et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Carmeliet, “Angiogenesis in life, disease and medicine,” Nature, vol. 438, no. 7070, pp. 932–936, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Egeblad, E. S. Nakasone, and Z. Werb, “Tumors as organs: complex tissues that interface with the entire organism,” Developmental Cell, vol. 18, no. 6, pp. 884–901, 2010. View at Google Scholar · View at Scopus
  3. E. Bullitt, M. Ewend, J. Vredenburgh et al., “Computerized assessment of vessel morphological changes during treatment of glioblastoma multiforme: report of a case imaged serially by MRA over four years,” NeuroImage, vol. 47, no. 2, pp. T143–T151, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C.-Y. Li, S. Shan, Q. Huang et al., “Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models,” Journal of the National Cancer Institute, vol. 92, no. 2, pp. 143–147, 2000. View at Google Scholar
  5. S. J. Schambach, S. Bag, C. Groden, L. Schilling, and M. A. Brockmann, “Vascular imaging in small rodents using micro-CT,” Methods, vol. 50, no. 1, pp. 26–35, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. S. E. Ungersma, G. Pacheco, C. Ho et al., “Vessel imaging with viable tumor analysis for quantification of tumor angiogenesis,” Magnetic Resonance in Medicine, vol. 63, no. 6, pp. 1637–1647, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. G. Korpanty, J. G. Carbon, P. A. Grayburn, J. B. Fleming, and R. A. Brekken, “Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature,” Clinical Cancer Research, vol. 13, no. 1, pp. 323–330, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. W. Xuan, M. Bygrave, H. Jiang et al., “Functional neoangiogenesis imaging of genetically engineered mouse prostate cancer using three-dimensional power doppler ultrasound,” Cancer Research, vol. 67, no. 6, pp. 2830–2839, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. A. M. Y. Cheung, A. S. Brown, V. Cucevic et al., “Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-CT following treatment with VEGFR-2 blocking antibodies,” Ultrasound in Medicine and Biology, vol. 33, no. 8, pp. 1259–1268, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Barua, P. Bitterman, J. M. Bahr et al., “Detection of tumor-associated neoangiogenesis by doppler ultrasonography during early-stage ovarian cancer in laying hens: a preclinical model of human spontaneous ovarian cancer,” Journal of Ultrasound in Medicine, vol. 29, no. 2, pp. 173–182, 2010. View at Google Scholar · View at Scopus
  11. K. J. Niermann, A. C. Fleischer, J. Huamani et al., “Measuring tumor perfusion in control and treated murine tumors: correlation of microbubble contrast-enhanced sonography to dynamic contrast-enhanced magnetic resonance imaging and fluorodeoxyglucose positron emission tomography,” Journal of Ultrasound in Medicine, vol. 26, no. 6, pp. 749–756, 2007. View at Google Scholar · View at Scopus
  12. K. Hoyt, J. M. Warram, H. Umphrey et al., “Determination of breast cancer response to bevacizumab therapy using contrast-enhanced ultrasound and artificial neural networks,” Journal of Ultrasound in Medicine, vol. 29, no. 4, pp. 577–585, 2010. View at Google Scholar · View at Scopus
  13. D. E. Kruse and K. W. Ferrara, “A new imaging strategy using wideband transient response of ultrasound contrast agents,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 52, no. 8, pp. 1320–1329, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Bouakaz, B. J. Krenning, W. B. Vletter, F. J. Ten Cate, and N. De Jong, “Contrast superharmonic imaging: A Feasibility Study,” Ultrasound in Medicine and Biology, vol. 29, no. 4, pp. 547–553, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. C.-K. Yen, S.-Y. Su, C.-C. Shen, and M.-N. Li, “Dual high-frequency difference excitation for contrast detection,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2164–2176, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. D. N. Stephens, D. E. Kruse, A. S. Ergun, S. Barnes, X. M. Lu, and K. W. Ferrara, “Efficient array design for sonotherapy,” Physics in Medicine and Biology, vol. 53, no. 14, pp. 3943–3969, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Gessner, M. Lukacs, M. Lee, E. Cherin, F. S. Foster, and P. A. Dayton, “High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: in vitro and in vivo studies,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 8, pp. 1772–1781, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. H. Yuan, T. Schroeder, J. E. Bowsher, L. W. Hedlund, T. Wong, and M. W. Dewhirst, “Intertumoral differences in hypoxia selectivity of the PET imaging agent64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone),” Journal of Nuclear Medicine, vol. 47, no. 6, pp. 989–998, 2006. View at Google Scholar · View at Scopus
  19. J. E. Streeter, R. Gessner, I. Miles, and P. A. Dayton, “Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies,” Molecular Imaging, vol. 9, no. 2, pp. 87–95, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Z. Zhang, J. G. Laufer, R. B. Pedley, and P. C. Beard, “In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy,” Physics in Medicine and Biology, vol. 54, no. 4, pp. 1035–1046, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Laufer, P. Johnson, E. Zhang et al., “In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy,” Journal of Biomedical Optics, vol. 17, no. 5, article 056016, 2012. View at Publisher · View at Google Scholar
  22. S. S. Abdelmoneim, M. Bernier, C. G. Scott et al., “Safety of contrast agent use during stress echocardiography in patients with elevated right ventricular systolic pressure: A Cohort Study,” Circulation, vol. 3, no. 3, pp. 240–248, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. S. S. Abdelmoneim, M. Bernier, C. G. Scott et al., “Safety of contrast agent use during stress echocardiography. A 4-Year experience from a single-center cohort study of 26,774 Patients,” Journal of the American College of Cardiology, vol. 2, no. 9, pp. 1048–1056, 2009. View at Publisher · View at Google Scholar · View at Scopus