International Journal of Biomaterials
 Journal metrics
Acceptance rate9%
Submission to final decision59 days
Acceptance to publication50 days
CiteScore2.410
Impact Factor-
 Submit

Osteopromotion Capacity of Bovine Cortical Membranes in Critical Defects of Rat Calvaria: Histological and Immunohistochemical Analysis

Read the full article

 Journal profile

International Journal of Biomaterials publishes research on the theory, design, engineering, fabrication, and implementation of materials and devices for therapeutic or diagnostic use in biological systems.

 Editor spotlight

International Journal of Biomaterials maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Potentials of Biochars Derived from Bamboo Leaf Biomass as Energy Sources: Effect of Temperature and Time of Heating

Biochars from bamboo leaves as a potential energy resource were synthesized by annealing in the oxygen-free environment. Samples were characterized using proximate analysis, Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Heating temperatures are 250°C, 300°C, and 350°C and for each temperature, the time was varied between 30, 60, and 90 minutes. The heating time for 30 minutes results in FC 30.777% and calorific value 15 MJ/Kg at temperature 250°C and decreased to 4.004% and 6 MJ/Kg at temperature 350°C, respectively. EDS shows the time of heating is an important parameter which shows the carbon and nitrogen contents were decreasing with the increase in the heating time, and silicon and oxygen contents were increasing with increase in the heating time. XRD shows broad (002) reflections between 20° and 30°, which indicated disordered carbon with small domains of coherent and parallel stacking of the graphene sheets, which is consistent with surface morphology of the SEM image. The experimental results indicated that heating at 300°C for 30 minutes is an effective and efficient parameter for fabrication of low-cost carbon from bamboo leaves which is a source of useful energy.

Research Article

Indigo Carmine and 2,6-Dichlorophenolindophenol Removal Using Cetyltrimethylammonium Bromide-Modified Palm Oil Fiber: Adsorption Isotherms and Mass Transfer Kinetics

In the present work, the usefulness of cetyltrimethylammonium bromide-modified palm oil fiber (CTAB-modified POF) for the removal of indigo carmine (IC) and 2,6-dichlorophenolindophenol (2,6-DCPIP) from aqueous solutions was investigated. Raw, NaOH-treated, and CTAB-modified POF were characterized by Fourier-transform infrared (FT-IR) spectroscopy, elemental analysis, thermogravimetric-hyperdifferential scanning calorimetric (TG-HDSC) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The adsorption studies of IC and 2,6-DCPIP were performed in batch mode using CTAB-modified POF. The results showed that equilibrium was attained after a contact time of 30 minutes for IC and 20 minutes for 2,6-DCPIP. The maximum capacity of adsorption was obtained at pH = 2. The capacity of adsorption considerably increased with modified biosorbents and with increasing initial concentration of dyes. The ionic strength favors the increasing adsorption capacity of IC and does not affect the adsorption capacity of 2,6-DCPIP. The percentage of adsorption increased with increasing mass of the biosorbents. The nonlinear regression of adsorption isotherms showed that Freundlich (r2 0.953;  = 4.398) and Temkin (r2 0.986;  = 1.196) isotherms are most appropriate to describe the adsorption of IC and 2,6-DCPIP on CTAB-modified POF, respectively. The maximum adsorption capacities determined by the Langmuir isotherm were 275.426 and 230.423 μmol·g−1 for IC and 2,6-DCPIP, respectively. The linear regression of adsorption kinetics was best described by the pseudo-second-order model (R2 0.998). The diffusion mechanism showed that external mass transfer is the main rate controlling step. Desorption of the two dyes is favorable in the alkaline medium.

Research Article

Modulus of Elasticity of Two Ceramic Materials and Stress-Inducing Mechanical Deformation following Fabrication Techniques and Adhesive Cementation Procedures of a Dental Ceramic

Statement of Problem. Fabrication technique, precementation, and cementation operative procedures can induce significant modification of the stressing patterns throughout the thickness of some classes of dental ceramic materials. Objectives. To estimate, by means of the deflection test, residual stress in restorative dental ceramic following fabrication technique, precementation, and resin cement coating procedures and to relate it to the elastic property of the ceramic material tested. Materials and Methods. From IPS e.max® Press, lithium disilicate heat-pressed glass-ceramic (elastic modulus of 95 ± 5 GPa) disc-shaped specimens (n = 10) were made according to the manufacturer’s instructions. One surface of the specimens was polished to provide accurate baseline profilometric measurements (reference surface). Deflection measurements were performed after polishing and annealing alumina air-particle abrasion of the unpolished surface followed by resin cement coating of the alumina air-particle abraded surface. The specimens were reprofiled at 24, 48, and 168 hrs after coating. The Friedman test followed by Dunn’s multiple comparison test was employed to identify significant differences (). To compare the difference in mean of maximum mechanical deflection, after cement coating at 0 hr, between two different ceramic materials (IPS e.max Press and Vitadur Alpha (result from another study)), Student’s t-test for unpaired data was performed. Results. Baseline profilometric measurements identified a convex form on the polished surface of the ceramic discs with a mean of maximum mechanical deflection of 4.45 ± 0.87 μm. A significant reduction in convexity of the polished specimens was characterized after alumina air-particle abrasion of the unpolished surface. The mean deflection significantly increased after resin cement coating and did not change over the time investigated. Conclusions. The precementation treatment, namely, alumina air-particle abrasion and cementation procedure of IPS e.max® Press glass-ceramic disc-shaped specimens generates stress that induced mechanical deformation. However, a dental ceramic material with higher elastic modulus (stiffer) would minimize stress-inducing mechanical deformation.

Research Article

The Effect of Okra (Abelmoschus esculentus (L.) Moench) Seed Extract on Human Cancer Cell Lines Delivered in Its Native Form and Loaded in Polymeric Micelles

Cancer is a noncommunicable disease with a high worldwide incidence and mortality rate. The National Cancer Institute of Thailand reports increasing cumulative incidence of breast, colorectal, liver, lung, and cervical cancers, accounting for more than 60% of all cancers in the kingdom. In this current work, we attempt to elucidate the phytochemical composition of the okra (Abelmoschus esculentus (L.) Moench) seed extract (OSE) and study its anticancer activity, delivered in its native form as well as in the form of polymeric micelles with enhanced solubility, in three carcinoma cell lines (MCF-7, HeLa, and HepG2). The presence of flavonoid compounds in the OSE was successfully confirmed, and direct delivery had the highest cytotoxic effect on the breast cancer cell line (MCF-7), followed by the hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cell lines in that order, while its delivery in polymeric micelles further increased this effect only in the HepG2 cell line. The OSE’s observed cytotoxic effects on cancer cell lines demonstrated a dose and time-dependent cell proliferation and migration inhibition plausibly due to VEGF production inhibition, leading to apoptosis and cell death, conceivably due to the four flavonoid compounds noted in the current study, one of which was isoquercitrin. However, in view of the latter compound’s isolated effects being inferior to those observed by the OSE, we hypothesize that either isoquercitrin requires the biological synergy of any one or all of the observed flavonoids or any of the three in isolation or all in concert are responsible. Further studies are required to elucidate the nature of the three unknown compounds. Furthermore, as we encountered significant problems in dissolving the okra seed extract and creating the polymeric micelles, further studies are needed to devise a clinically beneficial delivery and targeting system.

Research Article

Influence of Er,Cr:YSGG Laser Irradiation on the Push-Out Bond Strength of Zirconia and Glass Fiber Posts with Radicular Dentin

Objective. This in vitro study was designed to evaluate the influence of an Er,Cr:YSGG laser on the bond strength of zirconia and glass fiber posts with root dentin. Materials and methods. Ninety extracted single-rooted human teeth were randomized into 6 groups (n = 15/group) on the basis of different posts (zirconia/glass fiber) and Er,Cr:YSGG laser tips (axial and radial). Specimens were prepared for push-out testing with the help of a cutting machine; six slices (2 on each cervical, middle, and apical) of approximately 1 mm thickness were sectioned for all roots on a plane perpendicular to the long axis of the post. All specimens were placed into a universal testing machine with a defined 0.5 mm/min crosshead speed until the maximum failure load was obtained. Results. The highest mean push-out bond strength of the glass fiber and zirconia groups was achieved with laser treatment. The highest push-out bond strength was achieved with the axial fiber tip (7.63 ± 1.22 MPa), and the lowest was achieved with a radial fiber tip of the glass fiber group (6.98 ± 0.96 MPa). ANOVA showed a statistically significant difference between the groups (). The mean push-out bond strength was found to be higher with an axial fiber tip for both cervical and apical segments in the glass fiber and zirconia groups (). The independent t-test resulted in the overall highest mean push-out bond strength in the apical segments (). Conclusion. Within the limits of the present in vitro research study, an enhancement in the push-out bond strength of resin cement, mainly in the cervical region of the root canal, was achieved after irradiation with an Er,Cr:YSGG laser using an axial fiber tip.

Research Article

Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes

Biodegradable composite membranes containing propolis were produced from PCL/PLLA blends using a simple and low-cost solvent casting method, and subsequently their physicochemical, mechanical, and antibacterial properties were characterized. SEM analysis revealed that the addition of propolis has created honeycomb-like structures on the film surfaces. The flexibility of the films increased in the presence of propolis, which may provide ease of use during application. Propolis disrupted the organized structure of both polymers at the molecular level and caused decreases in the melting points. The films with propolis showed faster degradation in physiological conditions due to this molecular disruption. Moreover, the PLLA/PCL/propolis composite films exhibited remarkable antibacterial activities against S. aureus. Collectively, the data suggest that the produced films might be used as an alternative to exiting barrier membranes in guided tissue regeneration.

International Journal of Biomaterials
 Journal metrics
Acceptance rate9%
Submission to final decision59 days
Acceptance to publication50 days
CiteScore2.410
Impact Factor-
 Submit