Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2011 (2011), Article ID 175362, 8 pages
http://dx.doi.org/10.1155/2011/175362
Research Article

Bacterial Cellulose-Hydroxyapatite Nanocomposites for Bone Regeneration

1Institute of Chemistry, University Estadual Paulista—UNESP, CP 355, 14-801-970 Araraquara, SP, Brazil
2Department of Inorganic Chemistry, Institute of Chemistry—UNESP, Rua Francisco Degni s/n, 14-800-900 Araraquara, SP, Brazil
3Department of Morphology, Dental School, University Estadual Paulista—UNESP, Rua Humaitá, 1680, 14-801-903 Araraquara, SP, Brazil

Received 28 March 2011; Revised 1 June 2011; Accepted 7 July 2011

Academic Editor: Traian V. Chirila

Copyright © 2011 S. Saska et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Duskova, E. Leamerova, B. Sosna, and O. Gojis, “Guided tissue regeneration, barrier membranes and reconstruction of the cleft maxillary alveolus,” Journal of Craniofacial Surgery, vol. 17, no. 6, pp. 1153–1160, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. F. P. Strietzel, P. Khongkhunthian, R. Khattiya, P. Patchanee, and P. A. Reichart, “Healing pattern of bone defects covered by different membrane types-a histologic study in the porcine mandible,” Journal of Biomedical Materials Research—part B, vol. 78, no. 1, pp. 35–46, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Sculean, F. Schwarz, G. C. Chiantella et al., “Five-year results of a prospective, randomized, controlled study evaluating treatment of intra-bony defects with a natural bone mineral and GTR,” Journal of Clinical Periodontology, vol. 34, no. 1, pp. 72–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. J. H. Song, H. E. Kim, and H. W. Kim, “Collagen-apatite nanocomposite membranes for guided bone regeneration,” Journal of Biomedical Materials Research—part B, vol. 83, no. 1, pp. 248–257, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. Z. Wan, Y. Huang, C. D. Yuan et al., “Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications,” Materials Science and Engineering C, vol. 27, no. 4, pp. 855–864, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. P. Cromme, C. Zollfrank, L. Müller, F. A. Müller, and P. Greil, “Biomimetic mineralisation of apatites on Ca2+ activated cellulose templates,” Materials Science and Engineering C, vol. 27, no. 1, pp. 1–7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. S. A. Hutchens, R. S. Benson, B. R. Evans, H. M. O'Neill, and C. J. Rawn, “Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel,” Biomaterials, vol. 27, no. 26, pp. 4661–4670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Hong, Y. L. Wang, S. R. Jia, Y. Huang, C. Gao, and Y. Z. Wan, “Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route,” Materials Letters, vol. 60, no. 13-14, pp. 1710–1713, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Bodin, L. Gustafsson, and P. Gatenholm, “Surface-engineered bacterial cellulose as template for crystallization of calcium phosphate,” Journal of Biomaterials Science, vol. 17, no. 4, pp. 435–447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. T. T. Nge and J. Sugiyama, “Surface functional group dependent apatite formation on bacterial cellulose microfibrils network in a simulated body fluid,” Journal of Biomedical Materials Research—part A, vol. 81, no. 1, pp. 124–134, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. W. Czaja, D. Romanovicz, and R. M. Brown Jr., “Structural investigations of microbial cellulose produced in stationary and agitated culture,” Cellulose, vol. 11, no. 3-4, pp. 403–411, 2004. View at Google Scholar
  12. C. Bodhibukkana, T. Srichana, S. Kaewnopparat et al., “Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol,” Journal of Controlled Release, vol. 113, no. 1, pp. 43–56, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. R. C. Mayall, A. C. Mayall, L. C. Mayall et al., “Tratamento das úlceras tróficas dos membros com um novo substituto da pele,” Revista Brasileira de Cirurgia, vol. 80, no. 4, pp. 257–283, 1990. View at Google Scholar
  14. J. D. Fontana, A. M. de Souza, C. K. Fontana et al., “Acetobacter cellulose pellicle as a temporary skin substitute,” Applied Biochemistry and Biotechnology, vol. 24-25, pp. 253–264, 1990. View at Google Scholar · View at Scopus
  15. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angewandte Chemie, vol. 44, no. 22, pp. 3358–3393, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. dos Anjos, A. B. Novaes, R. Meffert, and E. Porto Barboza, “Clinical comparison of cellulose and expanded polytetrafluoroethylene membranes in the treatment of Class II furcations in mandibular molars with 6-month re-entry,” Journal of Periodontology, vol. 69, no. 4, pp. 454–459, 1998. View at Google Scholar · View at Scopus
  17. A. B. Novaes Jr., N. H. Moraes, A. B. Novaes et al., “Uso do BioFill como membrana biológica no tratamento da lesão de furca com e sem a utilização da hidroxiapatita porosa,” Revista Brasileira de Odontologia, vol. 47, no. 5, pp. 29–32, 1990. View at Google Scholar
  18. E. L. Batista, A. B. Novaes, J. J. C. Simonpietri, and F. C. Batista, “Use of bovine-derived anorganic bone associated with guided tissue regeneration in intrabony defects. Six-month evaluation at re-entry,” Journal of Periodontology, vol. 70, no. 9, pp. 1000–1007, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. J. J. Simonpietri-C, A. B. Novaes Jr., E. L. Batista Jr., and E. J. Feres Filho, “Guided tissue regeneration associated with bovine-derived anorganic bone in mandibular class II furcation defects. 6-month results at re-entry,” Journal of Periodontology, vol. 71, no. 6, pp. 904–911, 2000. View at Google Scholar · View at Scopus
  20. B. Fang, Y. Z. Wan, T. T. Tang, C. Gao, and K. R. Dai, “Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds,” Tissue Engineering—part A, vol. 15, no. 5, pp. 1091–1098, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. C. J. Grande, F. G. Torres, C. M. Gomez et al., “Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications,” Acta Biomaterialia, vol. 5, no. 5, pp. 1605–1615, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. K. A. Zimmermann, J. M. LeBlanc, K. T. Sheets, R. W. Fox, and P. Gatenholm, “Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications,” Materials Science and Engineering C, vol. 31, no. 1, pp. 43–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. J. K. Armstrong, B. Han, K. Kuwahara et al., “The effect of three hemostatic agents on early bone healing in an animal model,” BMC Surgery, vol. 10, article 37, pp. 1–12, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. H. S. Barud, A. M. de Araújo Júnior, D. B. Santos et al., “Thermal behavior of cellulose acetate produced from homogeneous acetylation of bacterial cellulose,” Thermochimica Acta, vol. 471, no. 1-2, pp. 61–69, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. H. S. Barud, C. A. Ribeiro, M. S. Crespi et al., “Thermal characterization of bacterial cellulose-phosphate composites membranes,” Journal of Thermal Analysis and Calorimetry, vol. 87, no. 3, pp. 815–818, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Gao, G. Y. Xiong, H. L. Luo, K. J. Ren, Y. Huang, and Y. Z. Wan, “Dynamic interaction between the growing Ca-P minerals and bacterial cellulose nanofibers during early biomineralization process,” Cellulose, vol. 17, no. 2, pp. 365–373, 2010. View at Publisher · View at Google Scholar · View at Scopus
  27. H. S. Barud, R. M. N. Assunção, M. A. U. Martines et al., “Bacterial cellulose-silica organic-inorganic hybrids,” Journal of Sol-Gel Science and Technology, vol. 46, no. 3, pp. 363–367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. S. N. Danilchenko, C. Moseke, L. F. Sukhodub, and B. Sulkio-Cleff, “X-ray diffraction studies of bone apatite under acid demineralization,” Crystal Research and Technology, vol. 39, no. 1, pp. 71–77, 2004. View at Google Scholar · View at Scopus
  29. G. R. Sauer and R. E. Wuthier, “Fourier transformed infrared characterization of mineral phases formed during induction of mineralization by colagenase-released matrix vesicles in vitro,” Journal of Biological Chemistry, vol. 263, no. 27, pp. 13718–13724, 1988. View at Google Scholar · View at Scopus
  30. H. S. Barud, C. Barrios, T. Regiani et al., “Self-supported silver nanoparticles containing bacterial cellulose membranes,” Materials Science and Engineering C, vol. 28, no. 4, pp. 515–518, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Morejón-Alonso, R. G. Carrodeguas, and J. A. D. García-Menocal, “Transformations in CDHA/OCP/β-TCP scaffold during ageing in simulated body fluid at 36.5°C,” Journal of Biomedical Materials Research—part B, vol. 84B, no. 2, pp. 386–393, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Morejón-Alonso, R. G. Carrodeguas, J. A. D. García-Menocal, J. A. A. Pérez, and S. M. Manent, “Effect of sterilization on the properties of CDHA-OCP-β-TCP biomaterial,” Materials Research, vol. 10, no. 1, pp. 15–20, 2007. View at Google Scholar · View at Scopus
  33. L. Le Guéhennec, P. Layrolle, G. Daculsi, H. Redl, A. Pandit, and J. Czernuszka, “A review of bioceramics and fibrin sealant,” European Cells and Materials, vol. 8, pp. 1–10, 2004. View at Google Scholar · View at Scopus
  34. C. E. Misch, Implantes Dentários Contemporâneos, Santos, São Paulo, Brazil, 2nd edition, 2006.
  35. G. Helenius, H. Bäckdahl, A. Bodin, U. Nannmark, P. Gatenholm, and B. Risberg, “In vivo biocompatibility of bacterial cellulose,” Journal of Biomedical Materials Research—part A, vol. 76, no. 2, pp. 431–438, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. E. Ekholm, M. Tommila, A. P. Forsback et al., “Hydroxapatite coating of cellulose sponge does not improve its osteogenic potency in rat bone,” Acta Biomaterialia, vol. 1, no. 5, pp. 535–544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. L. R. Mello, L. T. Feltrin, P. T. Fontes Neto, and F. A. P. Ferraz, “Duraplasty with biosynthetic cellulose: an experimental study,” Journal of Neurosurgery, vol. 86, no. 1, pp. 143–150, 1997. View at Google Scholar · View at Scopus
  38. P. N. Mendes, S. C. Rahal, O. C. M. Pereira-Junior et al., “In vivo and in vitro evaluation of an Acetobacter xylinum synthesized microbial cellulose membrane intended for guided tissue repair,” Acta Veterinaria Scandinavica, vol. 51, no. 1, article 12, pp. 1–8, 2009. View at Publisher · View at Google Scholar · View at Scopus