Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2011, Article ID 378034, 9 pages
http://dx.doi.org/10.1155/2011/378034
Research Article

Effect of Age and Diabetes on the Response of Mesenchymal Progenitor Cells to Fibrin Matrices

1Department of Cell Therapy, Fraunhofer Institute for Cell Therapy, Perlickstraβe 1, 04103 Leipzig, Germany
2Academic Unit of Oral & Maxillofacial Medicine and Surgery, School of Clinical Dentistry, University of Sheffield, S10 2TA Sheffield, UK
3Department of Engineering Materials and Sheffield Centre for Sports Medicine, University of Sheffield, S10 2RX Sheffield, UK

Received 30 May 2011; Revised 23 August 2011; Accepted 4 September 2011

Academic Editor: Alexander Marcus Seifalian

Copyright © 2011 A. Stolzing et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. J. Prockop, C. A. Gregory, and J. L. Spees, “One strategy for cell and gene therapy: harnessing the power of adult stem cells to repair tissues,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, supplement 1, pp. 11917–11923, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. M. S. Rao and M. P. Mattson, “Stem cells and aging: expanding the possibilities,” Mechanisms of Ageing and Development, vol. 122, no. 7, pp. 713–734, 2001. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. R. J. Deans and A. B. Moseley, “Mesenchymal stem cells: biology and potential clinical uses,” Experimental Hematology, vol. 28, no. 8, pp. 875–884, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. K. Stenderup, J. Justesen, C. Clausen, and M. Kassem, “Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells,” Bone, vol. 33, no. 6, pp. 919–926, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Liu, C. M. DiGirolamo, P. A. A. S. Navarro, M. A. Blasco, and D. L. Keefe, “Telomerase deficiency impairs differentiation of mesenchymal stem cells,” Experimental Cell Research, vol. 294, no. 1, pp. 1–8, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. Stolzing, N. Coleman, and A. Scutt, “Glucose-induced replicative senescence in mesenchymal stem cells,” Rejuvenation Research, vol. 9, no. 1, pp. 31–35, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. S. Lee, M. O. Lee, B. H. Moon, S. H. Shim, A. J. Fornace, and H. J. Cha, “Senescent growth arrest in mesenchymal stem cells is bypassed by Wip1-mediated downregulation of intrinsic stress signaling pathways,” Stem Cells, vol. 27, no. 8, pp. 1963–1975, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. C. C. Tsai, C. L. Chen, H. C. Liu et al., “Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines,” Journal of Biomedical Science, vol. 17, no. 1, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Barsotti, A. Magera, C. Armani et al., “Fibrin acts as biomimetic niche inducing both differentiation and stem cell marker expression of early human endothelial progenitor cells,” Cell Proliferation, vol. 44, no. 1, pp. 33–48, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Fang, S. Peng, A. Chen, F. Li, K. Ren, and N. Hu, “Biocompatibility studies on fibrin glue cultured with bone marrow mesenchymal stem cells in vitro,” Journal of Huazhong University of Science and Technology—Medical Science, vol. 24, no. 3, pp. 272–274, 2004. View at Google Scholar · View at Scopus
  12. S. Jockenhoevel, G. Zund, S. P. Hoerstrup et al., “Fibrin gel—advantages of a new scaffold in cardiovascular tissue engineering,” European Journal of Cardio-thoracic Surgery, vol. 19, no. 4, pp. 424–430, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. E. D. Grassl, T. R. Oegema, and R. T. Tranquillo, “Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent,” Journal of Biomedical Materials Research, vol. 60, no. 4, pp. 607–612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. A. Meana, J. Iglesias, M. Del Rio et al., “Large surface of cultured human epithelium obtained on a dermal matrix based on live fibroblast-containing fibrin gels,” Burns, vol. 24, no. 7, pp. 621–630, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. M. R. Falvo, O. V. Gorkun, and S. T. Lord, “The molecular origins of the mechanical properties of fibrin,” Biophysical Chemistry, vol. 152, no. 1–3, pp. 15–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Orlic, J. Kajstura, S. Chimenti et al., “Mobilized bone marrow cells repair the infarcted heart, improving function and survival,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10344–10349, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. L. Zhang, J. Tong, R. N. Lu, A. M. Scutt, D. Goltzman, and D. S. Miao, “Therapeutic potential of non-adherent BM-derived mesenchymal stem cells in tissue regeneration,” Bone Marrow Transplantation, vol. 43, no. 1, pp. 69–81, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. S. Krause, N. D. Theise, M. I. Collector et al., “Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell,” Cell, vol. 105, no. 3, pp. 369–377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Gorodetsky, A. Vexler, J. An, X. Mou, and G. Marx, “Haptotactic and growth stimulatory effects of fibrin(ogen) and thrombin on cultured fibroblasts,” Journal of Laboratory and Clinical Medicine, vol. 131, no. 3, pp. 269–280, 1998. View at Google Scholar · View at Scopus
  20. R. Gorodetsky, R. A. F. Clark, J. An et al., “Fibrin microbeads (FMB) as biodegradable carriers for culturing cells and for accelerating wound healing,” Journal of Investigative Dermatology, vol. 112, no. 6, pp. 866–872, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. W. Bensaïd, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel, and H. Petite, “A biodegradable fibrin scaffold for mesenchymal stem cell transplantation,” Biomaterials, vol. 24, no. 14, pp. 2497–2502, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Stolzing, D. Sellers, O. Llewelyn, and A. Scutt, “Diabetes induced changes in rat mesenchymal stem cells,” Cells Tissues Organs, vol. 191, no. 6, pp. 453–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. M. A. Baxter, R. F. Wynn, S. N. Jowitt, J. E. Wraith, L. J. Fairbairn, and I. Bellantuono, “Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion,” Stem Cells, vol. 22, no. 5, pp. 675–682, 2004. View at Google Scholar · View at Scopus
  24. A. Stolzing, E. Jones, D. McGonagle, and A. Scutt, “Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies,” Mechanisms of Ageing and Development, vol. 129, no. 3, pp. 163–173, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. K. R. Dobson, L. Reading, M. Haberey, X. Marine, and A. Scutt, “Centrifugal isolation of bone marrow from bone: an improved method for the recovery and quantitation of bone marrow osteoprogenitor cells from rat tibiae and femurae,” Calcified Tissue International, vol. 65, no. 5, pp. 411–413, 1999. View at Publisher · View at Google Scholar · View at Scopus
  26. I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J. G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002. View at Google Scholar · View at Scopus
  27. S. A. Kuznetsov, A. J. Friedenstein, and P. G. Robey, “Factors required for bone marrow stromal fibroblast colony formation in vitro,” British Journal of Haematology, vol. 97, no. 3, pp. 561–570, 1997. View at Google Scholar · View at Scopus
  28. A. Scutt and P. Bertram, “Bone marrow cells are targets for the anabolic actions of prostaglandin E2 on bone: induction of a transition from nonadherent to adherent osteoblast precursors,” Journal of Bone and Mineral Research, vol. 10, no. 3, pp. 474–487, 1995. View at Google Scholar · View at Scopus
  29. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Stolzing and A. Scutt, “Age-related impairment of mesenchymal progenitor cell function,” Aging Cell, vol. 5, no. 3, pp. 213–224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. J. S. Park, H. Y. Kim, H. W. Kim et al., “Increased caveolin-1, a cause for the declined adipogenic potential of senescent human mesenchymal stem cells,” Mechanisms of Ageing and Development, vol. 126, no. 5, pp. 551–559, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Campisi, “Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors,” Cell, vol. 120, no. 4, pp. 513–522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Rubio, J. Garcia-Castro, M. C. Martín et al., “Spontaneous human adult stem cell transformation,” Cancer Research, vol. 65, no. 8, pp. 3035–3039, 2005. View at Google Scholar · View at Scopus
  34. A. S. Brack and T. A. Rando, “Intrinsic changes and extrinsic influences of myogenic stem cell function during aging,” Stem Cell Reviews, vol. 3, no. 3, pp. 226–237, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Kupcsik, M. Alini, and M. J. Stoddart, “Epsilon-aminocaproic acid is a useful fibrin degradation inhibitor for cartilage tissue engineering,” Tissue Engineering A, vol. 15, no. 8, pp. 2309–2313, 2008. View at Google Scholar
  36. K. A. Cho, J. R. Sung, S. O. Yoon et al., “Morphological adjustment of senescent cells by modulating caveolin-1 status,” Journal of Biological Chemistry, vol. 279, no. 40, pp. 42270–42278, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. T. Matsubara, S. Tsutsumi, H. Pan et al., “A new technique to expand human mesenchymal stem cells using basement membrane extracellular matrix,” Biochemical and Biophysical Research Communications, vol. 313, no. 3, pp. 503–508, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Stolzing, S. Sethe, and A. M. Scutt, “Stressed stem cells: temperature response in aged mesenchymal stem cells,” Stem Cells and Development, vol. 15, no. 4, pp. 478–487, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Kasper, L. Mao, S. Geissler et al., “Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton,” Stem Cells, vol. 27, no. 6, pp. 1288–1297, 2009. View at Google Scholar
  40. R. McBeath, D. M. Pirone, C. M. Nelson, K. Bhadriraju, and C. S. Chen, “Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment,” Developmental Cell, vol. 6, no. 4, pp. 483–495, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Hall, “G proteins and small GTpases: distant relatives keep in touch,” Science, vol. 280, no. 5372, pp. 2074–2075, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. R. Xu, A. Boudreau, and M. J. Bissell, “Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices,” Cancer and Metastasis Reviews, vol. 28, no. 1-2, pp. 167–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Le Beyec, R. Xu, S. Y. Lee et al., “Cell shape regulates global histone acetylation in human mammary epithelial cells,” Experimental Cell Research, vol. 313, no. 14, pp. 3066–3075, 2007. View at Publisher · View at Google Scholar · View at Scopus