Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2012 (2012), Article ID 245727, 14 pages
http://dx.doi.org/10.1155/2012/245727
Research Article

Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

1Department of Metallurgical and Materials Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
2W.M. Keck Center for 3D Innovation, The University of Texas at El Paso, El Paso, TX 79968, USA

Received 22 March 2012; Accepted 29 June 2012

Academic Editor: Mohamed Rahaman

Copyright © 2012 Lawrence E. Murr et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Bronzino, Ed., The Biomedical Engineering Handbook, vol. 1, CRC Press, Boca Raton, Fla, USA, 2000.
  2. P. Christel, A. Meunier, and A. J. C. Lee, Eds., Biological and Biomechanical Performance of Biomaterials, Elsevier, New York, NY, USA, 1986.
  3. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Engineering, vol. 7, no. 6, pp. 679–689, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. J. R. Cahoon, “On the corrosion products of orthopedic implants,” Journal of Biomedical Materials Research, vol. 7, no. 4, pp. 375–383, 1973. View at Google Scholar · View at Scopus
  5. G. Ryan, A. Pandit, and D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopaedic applications,” Biomaterials, vol. 27, no. 13, pp. 2651–2670, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. L. E. Murr, K. N. Amato, S. J. Li et al., “Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, no. 7, pp. 1396–1411, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. R. D. Beckenbaugh and D. M. Ilstrup, “Total hip arthroplasty. A review of three hundred and thirty-three cases with long follow-up,” Journal of Bone and Joint Surgery—Series A, vol. 60, no. 3, pp. 306–313, 1978. View at Google Scholar · View at Scopus
  8. D. C. Dunand, “Processing of titanium foams,” Advanced Engineering Materials, vol. 6, no. 6, pp. 369–376, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Singh, P. D. Lee, R. J. Dashwood, and T. C. Lindley, “Titanium foams for biomedical applications: a review,” Materials Technology, vol. 25, no. 3-4, pp. 127–136, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. O. L. A. Harrysson, O. Cansizoglu, D. J. Marcellin-Little, D. R. Cormier, and H. A. West II, “Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology,” Materials Science and Engineering C, vol. 28, no. 3, pp. 366–373, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Heinl, L. Müller, C. Körner, R. F. Singer, and F. A. Müller, “Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting,” Acta Biomaterialia, vol. 4, no. 5, pp. 1536–1544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. X. Li, C. Wang, W. Zhang, and Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process,” Materials Letters, vol. 63, no. 3-4, pp. 403–405, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. L. E. Murr, S. M. Gaytan, F. Medina et al., “Next-generation biomedical implants using additive manufacturing of complex cellular and functional mesh arrays,” Philosophical Transactions of the Royal Society A, vol. 368, no. 1917, pp. 1999–2032, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, New York, NY, USA, 1997.
  15. M. F. Ashby, A. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, and H. N. G. Wadley, Metal Foams: A Design Guide, Butterworth-Heinemann, Boston, Mass, USA, 2000.
  16. D. A. Ramirez, L. E. Murr, S. J. Li et al., “Open-cellular copper structures fabricated by additive manufacturing using electron beam melting,” Materials Science and Engineering A, vol. 528, no. 16-17, pp. 5379–5386, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. L. E. Murr, S. J. Li, Y. X. Tian, K. Amato, E. Martinez, and F. Medina, “Open-Cellular Co-based and Ni-base superalloys fabricated by electron beam melting,” Materials, vol. 4, no. 4, pp. 782–790, 2011. View at Publisher · View at Google Scholar
  18. G. Roebben, B. Bollen, A. Brebels, J. Van Humbeeck, and O. Van Der Biest, “Impulse excitation apparatus to measure resonant frequencies, elastic moduli, and internal friction at room and high temperature,” Review of Scientific Instruments, vol. 68, no. 12, pp. 4511–4515, 1997. View at Google Scholar · View at Scopus
  19. L. E. Murr, S. A. Quinones, S. M. Gaytan et al., “Microstructure and mechanical behavior of Ti-6Al-4V produced by rapid-layer manufacturing, for biomedical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 2, no. 1, pp. 20–32, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J. P. Kruth, “A study of the microstructural evolution during selective laser melting of Ti-6Al-4V,” Acta Materialia, vol. 58, no. 9, pp. 3303–3312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. M. Gaytan, L. E. Murr, E. Martinez et al., “Comparison of microstructures and mechanical properties for solid and mesh cobalt-base alloy prototypes fabricated by electron beam melting,” Metallurgical and Materials Transactions A, vol. 41, no. 12, pp. 3216–3227, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. O. L. A. Harrysson and D. R. Cormier, “Direct fabrication of custom orthopaedic implants using electron beam melting technology,” in Advanced Manufacturing Technology for Medical Applications: Reverse Engineering, Software Conversion, and Rapid Prototyping, I. Gibson, Ed., chapter 9, John Wiley & Sons, Chichester, UK, 2006. View at Google Scholar