Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2012, Article ID 707863, 8 pages
http://dx.doi.org/10.1155/2012/707863
Review Article

Surface Modification of Biomaterials: A Quest for Blood Compatibility

1UCL Centre for Nanotechnology & Regenerative Medicine, University College London, Pond Street, London NW3 2QG, UK
2Royal Free Hampstead NHS Trust Hospital, Pond Street, London NW3 2QG, UK

Received 16 September 2011; Accepted 22 February 2012

Academic Editor: Narayana Garimella

Copyright © 2012 Achala de Mel et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Allender and M. Rayner, “Coronary heart disease statistics; British Heart Foundation,” Heart Statistics, 2007, http://www.bhf.org.uk/heart-health/statistics.aspx.
  2. M. Desai, A. M. Seifalian, and G. Hamilton, “Role of prosthetic conduits in coronary artery bypass grafting,” European Journal of Cardio-Thoracic Surgery, vol. 40, no. 2, pp. 394–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Baguneid, A. M. Seifalian, H. J. Salacinski, D. Murray, G. Hamilton, and M. G. Walker, “Tissue engineering of blood vessels,” British Journal of Surgery, vol. 93, no. 3, pp. 282–290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sarkar, K. M. Sales, G. Hamilton, and A. M. Seifalian, “Addressing thrombogenicity in vascular graft construction,” Journal of Biomedical Materials Research, vol. 82, no. 1, pp. 100–108, 2007. View at Publisher · View at Google Scholar
  5. M. D. Mager, V. Lapointe, and M. M. Stevens, “Exploring and exploiting chemistry at the cell surface,” Nature Chemistry, vol. 3, no. 8, pp. 582–589, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. B. Gorbet and M. V. Sefton, “Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes,” Biomaterials, vol. 25, no. 26, pp. 5681–5703, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. B. Tesfamariam, “Platelet function in intravascular device implant-induced intimal injury,” Cardiovascular Revascularization Medicine, vol. 9, no. 2, pp. 78–87, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. L. Li, C. M. Terry, Y. T. E. Shiu, and A. K. Cheung, “Neointimal hyperplasia associated with synthetic hemodialysis grafts,” Kidney International, vol. 74, no. 10, pp. 1247–1261, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. V. Mironov, V. Kasyanov, and R. R. Markwald, “Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication,” Trends in Biotechnology, vol. 26, no. 6, pp. 338–344, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Hoffmann, J. Groll, J. Heuts et al., “Blood cell and plasma protein repellent properties of star-peg-modified surfaces,” Journal of Biomaterials Science, Polymer Edition, vol. 17, no. 9, pp. 985–996, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. H. Noh and E. A. Vogler, “Volumetric interpretation of protein adsorption: competition from mixtures and the vroman effect,” Biomaterials, vol. 28, no. 3, pp. 405–422, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. T. A. Horbett, “Proteins: structure, properties and adsorption to surfaces,” in Biomaterials Science: An Introduction to Materials in Medicine, B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons, Eds., pp. 133–141, Academia Press, 1996. View at Google Scholar
  13. L. Vroman, “Effect of adsorbed proteins on the wettability of hydrophilic and hydrophobic solids,” Nature, vol. 196, no. 4853, pp. 476–477, 1962. View at Publisher · View at Google Scholar · View at Scopus
  14. J. D. Andrade and V. Hlady, “Protein adsorption and materials biocompatibility: a tutorial review and suggested hypoteheses,” Advances in Polymer Science, pp. 1–63, 1987. View at Google Scholar · View at Scopus
  15. K. L. Menzies and L. Jones, “The impact of contact angle on the biocompatibility of biomaterials,” Optometry and Vision Science, vol. 87, no. 6, pp. 387–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. S. P. Watson, “Platelet activation by extracellular matrix proteins in haemostasis and thrombosis,” Current Pharmaceutical Design, vol. 15, no. 12, pp. 1358–1372, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Solouk, B. G. Cousins, H. Mirzadeh, M. Solati-Hashtjin, S. Najarian, and A. M. Seifalian, “Surface modification of poss-nanocomposite biomaterials using reactive oxygen plasma treatment for cardiovascular surgical implant applications,” Biotechnology and Applied Biochemistry, vol. 58, no. 3, pp. 147–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. M. Nickson, P. J. Doherty, and R. L. Williams, “Novel polymeric coatings with the potential to control in-stent restenosis—an in vitro study,” Journal of Biomaterials Applications, vol. 24, no. 5, pp. 437–452, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. de Mel, G. Punshon, B. Ramesh et al., “In situ endothelialization potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft,” Bio-Medical Materials and Engineering, vol. 19, no. 4-5, pp. 317–331, 2009. View at Google Scholar
  20. P. W. Kämmerer, M. Heller, J. Brieger, M. O. Klein, B. Al-Nawas, and M. Gabriel, “Immobilisation of linear and cyclic rgd-peptides on titanium surfaces and their impact on endothelial cell adhesion and proliferation,” European Cells & Materials, vol. 21, pp. 364–372, 2011. View at Google Scholar · View at Scopus
  21. M. M. Reynolds and G. M. Annich, “The artificial endothelium,” Organogenesis, vol. 7, no. 1, pp. 42–49, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Kanie, R. Kato, Y. Zhao, Y. Narita, M. Okochi, and H. Honda, “Amino acid sequence preferences to control cell-specific organization of endothelial cells, smooth muscle cells, and fibroblasts,” Journal of Peptide Science, vol. 17, no. 6, pp. 479–486, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. M. S. Lord, B. Cheng, S. J. McCarthy, M. Jung, and J. M. Whitelock, “The modulation of platelet adhesion and activation by chitosan through plasma and extracellular matrix proteins,” Biomaterials, vol. 32, no. 28, pp. 6655–6662, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. M. Yaseen, X. Zhao, A. Freund, A. M. Seifalian, and J. R. Lu, “Surface structural conformations of fibrinogen polypeptides for improved biocompatibility,” Biomaterials, vol. 31, no. 14, pp. 3781–3792, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Ahmed, H. Ghanbari, B. G. Cousins, G. Hamilton, and A. M. Seifalian, “Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties,” Acta Biomaterialia, vol. 7, no. 11, pp. 3857–3867, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. de Mel, G. Jell, M. M. Stevens, and A. M. Seifalian, “Biofunctionalization of biomaterials for accelerated in situ endothelialization: a review,” Biomacromolecules, vol. 9, no. 11, pp. 2969–2979, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Y. Kanna, H. J. Salacinski, J. De Groot et al., “The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite,” Biomacromolecules, vol. 7, no. 1, pp. 215–223, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. Y. Kannan, H. J. Salacinski, M. Odlyha, P. E. Butler, and A. M. Seifalian, “The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study,” Biomaterials, vol. 27, no. 9, pp. 1971–1979, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Ghanbari, A. de Mel, and A. M. Seifalian, “Cardiovascular application of polyhedral oligomeric silsesquioxane nanomaterials: a glimpse into prospective horizons,” International Journal of Nanomedicine, vol. 6, pp. 775–786, 2011. View at Google Scholar
  30. A. Wilson, P. E. Butler, and A. M. Seifalian, “Adipose-derived stem cells for clinical applications: a review,” Cell Proliferation, vol. 44, no. 1, pp. 86–98, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Saha, J. F. Pollock, D. V. Schaffer, and K. E. Healy, “Designing synthetic materials to control stem cell phenotype,” Current Opinion in Chemical Biology, vol. 11, no. 4, pp. 381–387, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. N. S. Hwang, S. Varghese, and J. Elisseeff, “Controlled differentiation of stem cells,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 199–214, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. E. Dawson, G. Mapili, K. Erickson, S. Taqvi, and K. Roy, “Biomaterials for stem cell differentiation,” Advanced Drug Delivery Reviews, vol. 60, no. 2, pp. 215–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Chai and K. W. Leong, “Biomaterials approach to expand and direct differentiation of stem cells,” Molecular Therapy, vol. 15, no. 3, pp. 467–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Alobaid, H. J. Salacinski, K. M. Sales et al., “Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells: an in vitro evaluation,” European Journal of Vascular and Endovascular Surgery, vol. 32, no. 1, pp. 76–83, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. D. C. Miller, T. J. Webster, and K. M. Haberstroh, “Technological advances in nanoscale biomaterials: the future of synthetic vascular graft design,” Expert Review of Medical Devices, vol. 1, no. 2, pp. 259–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. D. C. Miller, K. M. Haberstroh, and T. J. Webster, “Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films,” Journal of Biomedical Materials Research, vol. 73, no. 4, pp. 476–484, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. D. C. Miller, K. M. Haberstroh, and T. J. Webster, “PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion,” Journal of Biomedical Materials Research, vol. 81, no. 3, pp. 678–684, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. R. J. McMurray, N. Gadegaard, P. M. Tsimbouri et al., “Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency,” Nature Materials, vol. 10, no. 8, pp. 637–644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. L. E. McNamara, R. J. McMurray, M. J. Biggs, F. Kantawong, R. O. Oreffo, and M. J. Dalby, “Nanotopographical control of stem cell differentiation,” Journal of Tissue Engineering, vol. 2010, article 120623, 2010. View at Google Scholar
  41. A. de Mel, C. Bolvin, M. Edirisinghe, G. Hamilton, and A. M. Seifalian, “Development of cardiovascular bypass grafts: endothelialization and applications of nanotechnology,” Expert Review of Cardiovascular Therapy, vol. 6, no. 9, pp. 1259–1277, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Loizidou and A. M. Seifalian, “Nanotechnology and its applications in surgery,” British Journal of Surgery, vol. 97, no. 4, pp. 463–465, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. Q. P. Pham, U. Sharma, and A. G. Mikos, “Electrospinning of polymeric nanofibers for tissue engineering applications: a review,” Tissue Engineering, vol. 12, no. 5, pp. 1197–1211, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. R. Murugan and S. Ramakrishna, “Nano-featured scaffolds for tissue engineering: a review of spinning methodologies,” Tissue Engineering, vol. 12, no. 3, pp. 435–447, 2006. View at Google Scholar · View at Scopus
  45. J. J. Norman and T. A. Desai, “Methods for fabrication of nanoscale topography for tissue engineering scaffolds,” Annals of Biomedical Engineering, vol. 34, no. 1, pp. 89–101, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. H. Perea, J. Aigner, J. T. Heverhagen, U. Hopfner, and E. Wintermantel, “Vascular tissue engineering with magnetic nanoparticles: seeing deeper,” Journal of Tissue Engineering and Regenerative Medicine, vol. 1, no. 4, pp. 318–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. De Mel, F. Murad, and A. M. Seifalian, “Nitric oxide: a guardian for vascular grafts?” Chemical Reviews, vol. 111, no. 9, pp. 5742–5767, 2011. View at Publisher · View at Google Scholar
  48. A. G. Kidane, H. Salacinski, A. Tiwari, K. R. Bruckdorfer, and A. M. Seifalian, “Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces,” Biomacromolecules, vol. 5, no. 3, pp. 798–813, 2004. View at Publisher · View at Google Scholar · View at Scopus