Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2014, Article ID 924278, 7 pages
http://dx.doi.org/10.1155/2014/924278
Research Article

Optimisation and In Vivo Evaluation of Pectin Based Drug Delivery System Containing Curcumin for Colon

1Department of Pharmaceutics, Oriental College of Pharmacy, Sector 2, Sanpada, Navi Mumbai 400 705, India
2Department of Radiology, Seth GS Medical College and KEM Hospital, Mumbai 400 012, India

Received 9 February 2014; Revised 14 June 2014; Accepted 15 June 2014; Published 2 July 2014

Academic Editor: Bruce Milthorpe

Copyright © 2014 Kishor Butte et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. K. Philip, S. Dabas, and K. Pathak, “Optimized prodrug approach: a means for achieving enhanced anti-inflammatory potential in experimentally induced colitis,” Journal of Drug Targeting, vol. 17, no. 3, pp. 235–241, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. O. Akala, O. Elekwachi, V. Chase, H. Johnson, M. Lazarre, and K. Scott, “Organic redox-initiated polymerization process for the fabrication of hydrogels for colon-specific drug delivery,” Drug Development and Industrial Pharmacy, vol. 29, no. 4, pp. 375–386, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. O. A. Odeku and J. T. Fell, “In-vitro evaluation of khaya and albizia gums as compression coatings for drug targeting to the colon,” Journal of Pharmacy and Pharmacology, vol. 57, no. 2, pp. 163–168, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. M. K. Chourasia and S. K. Jain, “Pharmaceutical approaches to colon targeted drug delivery systems,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 6, no. 1, pp. 33–66, 2003. View at Google Scholar · View at Scopus
  5. G. Bhawna, K. Singh Shailendra, and M. Dinanath, “Formulation and evaluation of colon targeted oral drug delivery systems for metronidazole in treatment of amoebiasis,” International Journal of Drug Delivery, vol. 3, no. 3, pp. 503–512, 2011. View at Google Scholar · View at Scopus
  6. M. Ashford, J. Fell, D. Attwood, H. Sharma, and P. Woodhead, “An evaluation of pectin as a carrier for drug targeting to the colon,” Journal of Controlled Release, vol. 26, no. 3, pp. 213–220, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Momin and K. Pundarikakshudu, “Studies on the development and optimization of oral colon targeted drug delivery system for sennoside in the treatment of constipation,” Drug Delivery Technology, vol. 6, no. 4, pp. 71–77, 2004. View at Google Scholar
  8. M. Momin and K. Pundarikakshudu, “In vitro studies on guar gum based formulation for the colon targeted delivery of sennosides,” Journal of Pharmacy and Pharmaceutical Sciences, vol. 7, no. 3, pp. 325–331, 2004. View at Google Scholar · View at Scopus
  9. Y. S. R. Krishnaiah, P. veer Raju, B. Dinesh Kumar, V. Satyanarayana, R. S. Karthikeyan, and P. Bhaskar, “Pharmacokinetic evaluation of guar gum-based colon-targeted drug delivery systems of mebendazole in healthy volunteers,” Journal of Controlled Release, vol. 88, no. 1, pp. 95–103, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. Z. Wakerly, J. T. Fell, D. Attwood, and D. Parkins, “Studies on drug release from pectin/ethylcellulose film-coated tablets: a potential colonic delivery system,” International Journal of Pharmaceutics, vol. 153, no. 2, pp. 219–224, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Sriamornsak, “Investigation of pectin as a carrier for oral delivery of proteins using calcium pectinate gel beads,” International Journal of Pharmaceutics, vol. 169, no. 2, pp. 213–220, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. G. S. Macleod, J. H. Collett, and J. T. Fell, “The potential use of mixed films of pectin, chitosan and HPMC for bimodal drug release,” Journal of Controlled Release, vol. 58, no. 3, pp. 303–310, 1999. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Turkoglu, S. Takka, H. Baran, and A. Sakr, “Pectin-hydroxyprophylmethylcellulose drug delivery system for colon targeting: design and in vitro evaluation,” Pharmazeutische Industrie, vol. 61, no. 7, pp. 662–665, 1999. View at Google Scholar · View at Scopus
  14. C. S. Beevers and S. Huang, “Pharmacological and clinical properties of curcumin,” Botanics: Targets and Therapy, vol. 2011, no. 1, pp. 5–18, 2011. View at Publisher · View at Google Scholar
  15. S. Boltonm, Ed., Pharmaceutical Statistics, Marcel Dekker, New York, NY, USA, 3rd edition, 1997.
  16. R. Singh, H. H. Tønnesen, S. B. Vogensen, T. Loftsson, and M. Másson, “Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV-Vis titration,” Journal of Inclusion Phenomena and Macrocyclic Chemistry, vol. 66, no. 3, pp. 335–348, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Wallace, H. Steinberg Gunther, N. Joseph, and H. Hasting, “Methods for determining in vivo tablet disintegration,” Journal of Pharmaceutical Sciences, vol. 54, pp. 747–752, 1965. View at Google Scholar