Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2016, Article ID 8098943, 6 pages
http://dx.doi.org/10.1155/2016/8098943
Research Article

Antibacterial Effect of Hydroalcoholic Extract of Punica granatum Linn. Petal on Common Oral Microorganisms

1Department of Oral Medicine, Islamic Azad University, Dental Branch, Tehran 19486, Iran
2Department of Operative Dentistry, School of Dentistry, Shahed University, Tehran, Iran
3Private Practice, Tehran, Iran
4Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
5Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Received 3 September 2015; Accepted 13 December 2015

Academic Editor: Esmaiel Jabbari

Copyright © 2016 Farnaz Hajifattahi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Dziedzic, R. Kubina, R. D. Wojtyczka, A. Kabała-Dzik, M. Tanasiewicz, and T. Morawiec, “The antibacterial effect of ethanol extract of polish propolis on mutans streptococci and lactobacilli isolated from saliva,” Evidence-Based Complementary and Alternative Medicine, vol. 2013, Article ID 681891, 12 pages, 2013. View at Publisher · View at Google Scholar · View at Scopus
  2. W. P. Holbrook and M. O. Magnúsdóttir, “Studies on strains of Streptococcus mutans isolated from caries-active and caries-free individuals in Iceland,” Journal of Oral Microbiology, vol. 4, Article ID 10611, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. J. R. Pires, C. Rossa Jr., and A. C. Pizzolitto, “In vitro antimicrobial efficiency of a mouthwash containing triclosan/gantrez and sodium bicarbonate,” Brazilian Oral Research, vol. 21, no. 4, pp. 342–347, 2007. View at Google Scholar · View at Scopus
  4. A. Derks, J. Frencken, E. Bronkhorst, A. M. Kuijpers-Jagtman, and C. Katsaros, “Effect of chlorhexidine varnish application on mutans streptococci counts in orthodontic patients,” American Journal of Orthodontics & Dentofacial Orthopedics, vol. 133, no. 3, pp. 435–439, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Semyari, P. Owlia, S. Farhadi, and S. Moghadami Tabrizi, “Evaluation of antimicrobial effect of Ammi visnaga against oral streptococci,” Journal of Microbiology and Antimicrobials, vol. 3, pp. 126–129, 2011. View at Google Scholar
  6. J. D. Hillman, S. S. Socransky, and M. Shivers, “The relationships between streptococcal species and periodontopathic bacteria in human dental plaque,” Archives of Oral Biology, vol. 30, no. 11, pp. 791–795, 1985. View at Publisher · View at Google Scholar · View at Scopus
  7. J. K. Clarke, “On the bacterial factor in the etiology of dental caries,” British Journal of Experimental Pathology, vol. 5, no. 3, pp. 141–147, 1924. View at Google Scholar
  8. E. A. Palmer, A. Vo, S. B. Hiles et al., “Mutans streptococci genetic strains in children with severe early childhood caries: follow-up study at one-year post-dental rehabilitation therapy,” Journal of Oral Microbiology, vol. 4, Article ID 19530, 2012. View at Publisher · View at Google Scholar
  9. J. C. Gunsolley, “Clinical efficacy of antimicrobial mouthrinses,” Journal of Dentistry, vol. 38, no. 1, pp. S6–S10, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. A. Gürgan, E. Zaim, I. Bakirsoy, and E. Soykan, “Short-term side effects of 0.2% alcohol-free chlorhexidine mouthrinse used as an adjunct to non-surgical periodontal treatment: a double-blind clinical study,” Journal of Periodontology, vol. 77, no. 3, pp. 370–384, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Abed, A. Bateni, A. Rabiee, and B. Poormoradi, “A review of the effect of mouthwashes and chewing gums on dental and oral health,” Journal of Isfahan Dental School, vol. 7, no. 5, pp. 843–861, 2012. View at Google Scholar
  12. E. A. Palombo, “Traditional medicinal plant extracts and natural products with activity against oral bacteria: potential application in the prevention and treatment of oral diseases,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 680354, 15 pages, 2011. View at Publisher · View at Google Scholar
  13. D. P. Mohapatra, V. Thakur, and S. K. Brar, “Antibacterial efficacy of raw and processed honey,” Biotechnology Research International, vol. 2011, Article ID 917505, 6 pages, 2011. View at Publisher · View at Google Scholar
  14. S. Vahabi, E. Najafi, and S. Alizadeh, “In vitro antimicrobial effects of some herbal essences against oral pathogens,” Journal of Medicinal Plant Research, vol. 5, no. 19, pp. 4870–4878, 2011. View at Google Scholar · View at Scopus
  15. J. B. Taheri, S. Azimi, N. Rafieian, and H. Akhavan Zanjani, “Herbs in dentistry,” International Dental Journal, vol. 61, no. 6, pp. 287–296, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. N. Nagappan and J. John, “Antimicrobial efficacy of herbal and chlorhexidine mouth rinse—a systematic review,” IOSR Journal of Dental and Medical Sciences, vol. 2, no. 4, pp. 5–10, 2012. View at Publisher · View at Google Scholar
  17. I. Ahmad and A. Z. Beg, “Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens,” Journal of Ethnopharmacology, vol. 74, no. 2, pp. 113–123, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Dalirsani, M. Aghazadeh, M. Adibpour et al., “In vitro comparison of the antimicrobial activity of ten herbal extracts against Streptococcus mutans with chlorhexidine,” Journal of Applied Sciences, vol. 11, no. 5, pp. 878–882, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Jurenka, “Therapeutic applications of pomegranate (Punica granatum L.): a review,” Alternative Medicine Review, vol. 13, no. 2, pp. 128–144, 2008. View at Google Scholar · View at Scopus
  20. G. Kaur, Z. Jabbar, M. Athar, and M. S. Alam, “Punica granatum (pomegranate) flower extract possesses potent antioxidant activity and abrogates Fe-NTA induced hepatotoxicity in mice,” Food and Chemical Toxicology, vol. 44, no. 7, pp. 984–993, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Bagri, M. Ali, V. Aeri, M. Bhowmik, and S. Sultana, “Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes,” Food and Chemical Toxicology, vol. 47, no. 1, pp. 50–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Mahboubi, J. Asgarpanah, P. N. Sadaghiyani, and M. Faizi, “Total phenolic and flavonoid content and antibacterial activity of Punica granatum L. var. pleniflora flowers (Golnar) against bacterial strains causing foodborne diseases,” BMC Complementary and Alternative Medicine, vol. 15, no. 1, pp. 366–372, 2015. View at Publisher · View at Google Scholar
  23. S. S. Dahham, M. N. Ali, H. Tabassum, and M. Khan, “Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.),” American-Eurasian Journal of Agricultural & Environmental Sciences, vol. 9, no. 3, pp. 273–281, 2010. View at Google Scholar
  24. A. D. Duman, M. Ozgen, K. S. Dayisoylu, N. Erbil, and C. Durgac, “Antimicrobial activity of six pomegranate (Punica granatum L.) varieties and their relation to some of their pomological and phytonutrient characteristics,” Molecules, vol. 14, no. 5, pp. 1808–1817, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. L. C. D. S. Vasconcelos, F. C. Sampaio, M. C. C. Sampaio, M. D. S. V. Pereira, J. S. Higino, and M. H. P. Peixoto, “Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans,” Brazilian Dental Journal, vol. 17, no. 3, pp. 223–227, 2006. View at Google Scholar · View at Scopus
  26. M. C. Mothabe, R. V. Nikovola, N. Lall, and N. Z. Nyazema, “Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 286–293, 2005. View at Publisher · View at Google Scholar
  27. D. Prashanth, M. K. Asha, and A. Amit, “Antibacterial activity of Punica granatum,” Fitoterapia, vol. 72, no. 2, pp. 171–173, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. V. Pereira, M. S. V. Pereira, F. C. Sampaio et al., “In vitro antimicrobial and anti-adherence effect of Punica granatum Linn extract upon dental biofilm microorganisms,” Brazilian Journal of Pharmacognsosy, vol. 16, no. 1, pp. 88–93, 2006. View at Google Scholar
  29. L. C. de Souza Vasconcelos, M. C. C. Sampaio, F. C. Sampaio, and J. S. Higino, “Use of Punica granatum as an antifungal agent against candidosis associated with denture stomatitis,” Mycoses, vol. 46, no. 5-6, pp. 192–196, 2003. View at Publisher · View at Google Scholar
  30. D. R. de Medeiros Nóbrega, R. L. Santos, R. D. Soares, P. M. Alves, A. C. Medeiros, and J. V. Pereira, “A randomized, controlled clinical trial on the clinical and microbiological efficacy of Punica granatum Linn mouthwash,” Brazilian Research in Pediatric Dentistry and Integrated Clinic, vol. 15, no. 1, pp. 301–308, 2015. View at Google Scholar
  31. E. Vahid-Dastjerdi, Z. Abdolazimi, M. Ghazanfarian, P. Amdjadi, M. Kamalinejad, and A. Mahboubi, “Effect of Punica granatum L. flower water extract on five common oral bacteria and bacterial biofilm formation on orthodontic wire,” Iranian Journal of Public Health, vol. 43, no. 12, pp. 1688–1694, 2014. View at Google Scholar · View at Scopus
  32. F. Haghighati, S. Jafari, and J. Momen Beitollahi, “Comparison of antimicrobial effects of ten Herbal extracts with chlorhexidine on three different oral pathogens; an in vitro study,” Hakim, vol. 6, no. 3, pp. 71–76, 2003. View at Google Scholar
  33. K. C. Chinsembu, “Plants and other natural products used in the management of oral infections and improvement of oral health,” Acta Tropica, vol. 154, pp. 6–18, 2015. View at Publisher · View at Google Scholar
  34. S. M. S. Menezes, L. N. Cordeiro, and G. S. B. Viana, “Punica granatum (pomegranate) extract is active against dental plaque,” Journal of Herbal Pharmacotherapy, vol. 6, no. 2, pp. 79–92, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Cockerill, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, Clinical and Laboratory Standards Institute (CLSI), 2012.
  36. S. H. Abdollahzadeh, R. Y. Mashouf, H. Mortazavi, M. H. Moghaddam, N. Roozbahani, and M. Vahedi, “Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens,” Journal of Dentistry, vol. 8, no. 1, pp. 1–6, 2011. View at Google Scholar
  37. O. H. Harald, J. S. Edward, and V. R. Andre, Sturdevant's Art and Science of Operative Dentistry, Mosby Elservier, St. Louis, Mo, USA, 6th edition, 2013.
  38. L. C. D. C. Galvão, V. F. Furletti, S. M. F. Bersan et al., “Antimicrobial activity of essential oils against Streptococcus mutans and their antiproliferative effects,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 751435, 12 pages, 2012. View at Publisher · View at Google Scholar
  39. P. R. Bhandari, “Pomegranate (Punica granatum L). Ancient seeds for modern cure? Review of potential therapeutic applications,” International journal of Nutrition, Pharmacology, Neurological Diseases, vol. 2, no. 3, pp. 171–184, 2012. View at Publisher · View at Google Scholar
  40. W. A. Bernardes, R. Lucarini, M. G. Tozatti et al., “Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens,” Zeitschrift fur Naturforschung C, vol. 65, no. 9-10, pp. 588–593, 2010. View at Google Scholar · View at Scopus
  41. E. Lobo, “Comparative in vitro study of antimicrobial against oral biofilms of Streptococcus mutans,” CIBTech Journal of Microbiology, vol. 2, no. 2, pp. 45–53, 2013. View at Google Scholar