Table of Contents Author Guidelines Submit a Manuscript
International Journal of Biomaterials
Volume 2017, Article ID 5690625, 7 pages
https://doi.org/10.1155/2017/5690625
Research Article

Fabrication of Polycaprolactone/Polyurethane Loading Conjugated Linoleic Acid and Its Antiplatelet Adhesion

1Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, International University of Vietnam National Universities, Ho Chi Minh City 700000, Vietnam
2Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 01 Mac Dinh Chi, District 1, Ho Chi Minh City, Vietnam
3Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Correspondence should be addressed to Nguyen Thi Hiep; moc.liamg@1891peihtn

Received 20 February 2017; Revised 29 March 2017; Accepted 27 April 2017; Published 16 May 2017

Academic Editor: Kheng-Lim Goh

Copyright © 2017 Ho Hieu Minh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Ravi, Z. Qu, and E. L. Chaikof, “Polymeric materials for tissue engineering of arterial substitutes,” Vascular, vol. 17, supplement 1, pp. S45–S54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. A. Kumar, L. P. Brewster, J. M. Caves, and E. L. Chaikof, “Tissue engineering of blood vessels: functional requirements, progress, and future challenges,” Cardiovascular Engineering and Technology, vol. 2, no. 3, pp. 137–148, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Yamanaka, P. Soman, W. J. Weiss, and C. A. Siedlecki, “In-vitro evaluation of blood compatibility of polyurethane biomaterials,” ASAIO Journal, vol. 52, no. 2, p. 20A, 2006. View at Publisher · View at Google Scholar
  4. L. L. Demer and Y. Tintut, “Vascular calcification: pathobiology of a multifaceted disease,” Circulation, vol. 117, no. 22, pp. 2938–2948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. D. G. Castner and B. D. Ratner, “Biomedical surface science: foundations to frontiers,” Surface Science, vol. 500, no. 1–3, pp. 28–60, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Hong, A. Larsson, K. N. Ekdahl, G. Elgue, R. Larsson, and B. Nilsson, “Contact between a polymer and whole blood: sequence of events leading to thrombin generation,” Journal of Laboratory and Clinical Medicine, vol. 138, no. 2, pp. 139–145, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Palta, R. Saroa, and A. Palta, “Overview of the coagulation system,” Indian Journal of Anaesthesia, vol. 58, no. 5, pp. 515–523, 2014. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Kim and S. C. Kim, “PEO-grafting on PU/PS IPNs for enhanced blood compatibility—effect of pendant length and grafting density,” Biomaterials, vol. 23, no. 9, pp. 2015–2025, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Pinto, P. Alves, C. M. Matos, A. C. Santos, L. R. Rodrigues, J. A. Teixeira et al., “Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications,” Colloids and Surfaces B: Biointerfaces, vol. 81, no. 1, pp. 20–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. G. A. Abraham, A. A. A. D. Queiroz, and J. S. Román, “Immobilization of a nonsteroidal antiinflammatory drug onto commercial segmented polyurethane surface to improve haemocompatibility properties,” Biomaterials, vol. 23, no. 7, pp. 1625–1638, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. M. T. Khorasani and H. Mirzadeh, “In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials,” Journal of Applied Polymer Science, vol. 91, no. 3, pp. 2042–2047, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Z. Yang, J. Wang, R. Luo et al., “The covalent immobilization of heparin to pulsed-plasma polymeric allylamine films on 316L stainless steel and the resulting effects on hemocompatibility,” Biomaterials, vol. 31, no. 8, pp. 2072–2083, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Guha Thakurta and A. Subramanian, “Evaluation of in situ albumin binding surfaces: a study of protein adsorption and platelet adhesion,” Journal of Materials Science: Materials in Medicine, vol. 22, no. 1, pp. 137–149, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. F.-C. Kung and M.-C. Yang, “Effect of conjugated linoleic acid grafting on the hemocompatibility of polyacrylonitrile membrane,” Polymers for Advanced Technologies, vol. 17, no. 6, pp. 419–425, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. A. P. Torres-Duarte and J. Y. Vanderhoek, “Conjugated linoleic acid exhibits stimulatory and inhibitory effects on prostanoid production in human endothelial cells and platelets,” Biochimica et Biophysica Acta: Molecular Cell Research, vol. 1640, no. 1, pp. 69–76, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Yu, D. Adams, and M. Gabel, “Conjugated linoleic acid isomers differ in their free radical scavenging properties,” Journal of Agricultural and Food Chemistry, vol. 50, no. 14, pp. 4135–4140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Benito, G. J. Nelson, D. S. Kelley, G. Bartolini, P. C. Schmidt, and V. Simon, “The effect of conjugated linoleic acid on platelet function, platelet fatty acid composition, and blood coagulation in humans,” Lipids, vol. 36, no. 3, pp. 221–227, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Li, D. Butz, B. Dong, Y. Park, M. W. Pariza, and M. E. Cook, “Selective conjugated fatty acids inhibit guinea pig platelet aggregation,” European Journal of Pharmacology, vol. 545, no. 2-3, pp. 93–99, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. T.-H. Nguyen, A. R. Padalhin, H. S. Seo, and B.-T. Lee, “A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility,” Journal of Biomaterials Science, Polymer Edition, vol. 24, no. 14, pp. 1692–1706, 2013. View at Publisher · View at Google Scholar · View at Scopus
  20. M. R. Williamson and A. G. A. Coombes, “Gravity spinning of polycaprolactone fibres for applications in tissue engineering,” Biomaterials, vol. 25, no. 3, pp. 459–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. H. R. Lim, H. S. Baek, M. H. Lee et al., “Surface modification for enhancing behaviors of vascular endothelial cells onto polyurethane films by microwave-induced argon plasma,” Surface and Coatings Technology, vol. 202, no. 22-23, pp. 5768–5772, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Li, Y. Su, S. Liu, L. Tan, X. Mo, and S. Ramakrishna, “Encapsulation of proteins in poly(l-lactide-co-caprolactone) fibers by emulsion electrospinning,” Colloids and Surfaces B: Biointerfaces, vol. 75, no. 2, pp. 418–424, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. N. T. Hiep and B.-T. Lee, “Electro-spinning of PLGA/PCL blends for tissue engineering and their biocompatibility,” Journal of Materials Science: Materials in Medicine, vol. 21, no. 6, pp. 1969–1978, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Salimi, A. Ghaee, A. F. Ismail, M. H. D. Othman, and G. P. Sean, “Current approaches in improving hemocompatibility of polymeric membranes for biomedical application,” Macromolecular Materials and Engineering, vol. 301, no. 7, pp. 771–800, 2016. View at Publisher · View at Google Scholar
  25. R. Dhurat and M. S. Sukesh, “Principles and methods of preparation of platelet-rich plasma: a review and author's perspective,” Journal of Cutaneous and Aesthetic Surgery, vol. 7, no. 4, pp. 189–197, 2014. View at Publisher · View at Google Scholar
  26. P. P. Vicario, Z. Lu, Z. Wang, K. Merritt, D. Buongiovanni, and P. Chen, “Antithrombogenicity of hydromer's polymeric formula F202™ immobilized on polyurethane and electropolished stainless steel,” Journal of Biomedical Materials Research - Part B Applied Biomaterials, vol. 86, no. 1, pp. 136–144, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. F.-C. Kung and M.-C. Yang, “Effect of conjugated linoleic acid immobilization on the hemocompatibility of cellulose acetate membrane,” Colloids and Surfaces B: Biointerfaces, vol. 47, no. 1, pp. 36–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. C. J. Angammana and S. H. Jayaram, “Analysis of the effects of solution conductivity on electrospinning process and fiber morphology,” IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1109–1117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. V. Chiono, P. Mozetic, M. Boffito et al., “Polyurethane-based scaffolds for myocardial tissue engineering,” Interface Focus, vol. 4, no. 1, 2014. View at Publisher · View at Google Scholar · View at Scopus
  30. B. Abderrahim, E. Abderrahman, A. Mohamed, T. Fatima, T. Abdesselam, and O. Krim, “Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study,” World Journal of Environmental Engineering, vol. 3, no. 4, 95 pages, 2015. View at Google Scholar