International Journal of Corrosion
 Journal metrics
See full report
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore4.800
Journal Citation Indicator0.390
Impact Factor3.1

Investigation of Wall Thickness, Corrosion, and Deposits in Industrial Pipelines Using Radiographic Technique

Read the full article

 Journal profile

International Journal of Corrosion publishes research dedicated to understanding, managing, and preventing corrosion in all its manifestations. The journal welcomes the submission of both fundamental and highly applied studies.

 Editor spotlight

International Journal of Corrosion maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Sodium Citrate as an Environmentally Friendly Corrosion Inhibitor of Steel in a Neutral Environment

In this work we investigated the inhibiting effect of sodium citrate, an environmentally safe corrosion inhibitor, on low-alloy steel 09G2S in a neutral environment using electrochemical methods. Potentiodynamic studies showed that sodium citrate reduces corrosion currents of 09G2S steel in a 0.1% NaCl solution and reaches its maximum efficiency at a concentration of 2.5 g/l. Electrochemical impedance spectroscopy results indicate the adsorption of citrate ions and the formation of a protective film, which probably consists of Fe-citrate complexes. The formation of a protective film on the steel surface in sodium citrate-inhibited solutions was confirmed by the results of scanning electron microscopy and EDX analysis. Hence, our research shows that sodium citrate has satisfactory anticorrosion properties and can be used as a basic component during the development of environmentally safe inhibitor compositions for the protection of low-alloyed carbon steels in neutral environments of recirculating water supply systems in petroleum refineries, petrochemical plants, and other industries.

Research Article

Effects of Mineral Admixtures on Macrocell Corrosion Behaviors of Steel Bars in Chloride-Contaminated Concrete

Based on the macrocell corrosion theory and by alternating the microcell corrosion state and macrocell corrosion state, the influence of mineral admixtures, such as fly ash, slag, and limestone powder, on the macrocell corrosion behaviors of steel bars embedded in chloride-contaminated concrete were investigated and clarified. The results indicated that the inhibition effect induced by slag on macrocell corrosion and microcell corrosion was obviously better than that induced by fly ash or limestone powder. The presence of slag in chloride-contaminated concrete could remarkably decrease the corrosion area ratios of anodic steel, even if the replacement levels of slag to cement reached 70%. With the addition of mineral admixtures into concrete, the ratio of macrocell current density to microcell current density was decreased to some extent, depending on the types, replacement levels, and replacement ways of mineral admixtures. The use of slag and fly ash in chloride-contaminated concrete can effectively weaken the macrocell corrosion and make the corrosion be dominated by microcell corrosion. The types and replacement levels of mineral admixtures also had a remarkable influence on the control mode of macrocell corrosion. The use of slag was more effective than that of fly ash or limestone to weaken the cathode control mode of macrocell corrosion and made the control mode of macrocell corrosion be dominated by jointed control.

Research Article

Computational and Experimental Evaluation of Inhibition Potential of a New Ecologically Friendly Inhibitor Leaves of Date Palm (Phoenix dactylifera L.) for Aluminium Corrosion in an Acidic Media

PDL (Phoenix dactylifera leaves) is widely spread in Iraq and is known to be rich in phytochemicals as flavonoids, saponins, tannins, glycosides, oils, and lipids. The effect of PDL extract in reducing the corrosion of Aluminium in 1 M HCl solution using a weight loss technique, and computational chemistry calculations were investigated in this study. The study carried out at different temperatures (20, 30, 40, and 50) in the presence of plant extract and the absence of extract. A number of parameters were included to be detected in this study according to the density functional theory (DFT)/P3LYP/6-311G, including the highest occupied molecular orbital EHOMO, the lowest unoccupied molecular orbital ELUMO, energy gap , softness , hardness , dipole moment , electronegativity , electrophilicity , inhibitor-metal interaction energy , and electrons transferred fraction . Two adsorption isotherms were used to explain inhibitor adsorption behavior. Two adsorption isotherms were used to explain inhibitor adsorption behavior, the Freundlich adsorption isotherm and the Langmuir adsorption isotherm, the Freundlich adsorption isotherm was discovered to be followed by the inhibitor with correlation coefficient values ranging from 0.98 to 0.94 with temperature increased from 20 to 50 degrees Celsius. The adsorption mechanism includes a physical adsorption process. The results showed that with the increment of the inhibitors concentration, there was an improvement of the inhibition efficiency. The most outstanding inhibitor efficiency was 97.7% at 10 mL/L inhibitor concentration.

Research Article

Electrochemical, Isotherm, and Material Strength Studies of Cucumeropsis mannii Shell Extract on A515 Grade 70 Carbon Steel in NaCl Solution

In this study, corrosion inhibition efficiency of Cucumeropsis mannii shell extract (CMSE) was tested on A515 Grade 70 carbon steel in 1.0 M NaCl solution. Potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), and weight loss (WL) measurements were used to investigate the inhibition efficiency. Scanning electron microscopy, Fourier transform infrared spectroscopy, atomic adsorption spectroscopy, and energy dispersive spectroscopy were used to characterize the carbon steel and extract. PDP and EIS measurements revealed maximum inhibition efficiency of 91.2% and 92.2%, respectively. Tafel plot confirmed inhibitor to be a mixed type. A monolayer adsorption of CMSE molecules occurred spontaneously by physisorption. Polarization resistance increased with increasing inhibitor concentration. WL measurement revealed decrease in corrosion rate with increasing concentration of corrosion inhibitor. Maximum Young modulus and hardness of 202.4 GPa and 112.3 BHN, respectively, were recorded for the carbon steel at a minimum corrosion rate and load. Pitting and uniform corrosion were formed on the carbon steel in the absence of CMSE. CMSE contains –OH, –OCH3, and –C-NH3 as active functional groups. In conclusion, Cucumeropsis mannii shell extract acted excellently as corrosion inhibitor for A515 Grade 70 carbon steel in 1.0 M NaCl.

Research Article

Galvanic Corrosion and Fatigue Behavior of a SM480C Welded Joint Steel in a Sea-Crossing Suspension Bridge

The corrosion tendency and fatigue behavior of a SM480C welded joint in a sea-crossing suspension bridge after twenty-year exposure to a marine environment was investigated in this work. It was found that the corrosion product on the whole surface of the welded joint is loose, with many holes and cracks, which allowing corrosive media enter and reach the surface of the substrate. Localized corrosion occurred in the weld zone (WZ) and the heat-affected zone (HAZ), the maximum depth of localized corrosion in the HAZ reached 1.8 mm, and the maximum local corrosion rate is 0.082 mm/y. By using Bimetallic Conjugation Theory calculations, the galvanic effect of the welded joint was qualified, indicates that HAZ was the most corrosion susceptible area in the welded joint. The galvanic corrosion current on HAZ reached approximately 2 μA, which is much higher than the corrosion of isolated HAZ by about 6.5 times. The corrosion has an obvious influence on the fatigue performance, the elongation of the bridge deck decreases by 40%~70%, and the tensile strength decreases by 4.5%~31.33%. In order to ensure the service safety and avoid premature failure, the average thickness of the corroded bridge deck should not be less than 10 mm under the stress amplitude of 115 MPa.

Research Article

Anticorrosive Effect of Halogenated Aniline Enaminoesters on Carbon Steel in HCl

Four enaminoesters derived from halogenated aniline, with potential anticorrosion activity, were synthesized and tested against carbon steel AISI 1020 in acid medium using 1.0 mol L-1 HCl. The synthesis was demonstrated through the reaction of ethyl acetoacetate with four different amines, in the presence of glacial acetic acid and molecular sieve, using ethanol as solvent for 24 h. The evaluation of the anticorrosive activity was performed using the gravimetric technique and electrochemical methods, such as electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization (PP). Results indicated that the F-EN (Ethyl (2Z)-3-[(4-fluoro-phenyl)-amino]-but-2-enoate) inhibitor had higher corrosion inhibition efficiency, of 98% by mass loss, and 85% by electrochemical techniques. Adsorption obeyed the Langmuir isotherm, thus suggesting that the inhibitors form a monolayer film in metal surface. These results also contributed to the calculations of the physicochemical parameters of , , and , which confirmed the corrosion inhibition when compared to the absence of the inhibitors.

International Journal of Corrosion
 Journal metrics
See full report
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore4.800
Journal Citation Indicator0.390
Impact Factor3.1
 Submit

Article of the Year Award: Impactful research contributions of 2022, as selected by our Chief Editors. Discover the winning articles.