Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 162425, 4 pages
Research Article

Laser Surface Alloying of 316L Stainless Steel with Ru and Ni Mixtures

1School of Chemical and Metallurgical Engineering, University of the Witwatersrand and DST/NRF Centre of Excellence in Strong Materials, Johannesburg 2001, South Africa
2Council for Scientific and Industrial Research, National Laser Centre, Pretoria 0001, South Africa

Received 14 March 2012; Accepted 22 May 2012

Academic Editor: Muthukannan Duraiselvam

Copyright © 2012 M. B. Lekala et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


The surfaces of AISI 316L stainless steel were laser alloyed with ruthenium powder and a mixture of ruthenium and nickel powders using a cw Nd:YAG laser set at fixed operating parameters. The microstructure, elemental composition, and corrosion characteristics of the alloyed zone were analyzed using optical and scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and corrosion potential measurements. The depth of alloyed zone was measured using the AxioVision program and found to be approximately 1.8 mm for all the alloyed specimens. Hardness profile measurements through the surface-substrate interface showed a significant increase from 160 HV for the substrate to a maximum of 247 HV for the alloyed layer. The sample laser alloyed with 80 wt% Ni-20 wt% presented the most noble corrosion potential of  V and the lowest corrosion current density .