Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 185842, 7 pages
http://dx.doi.org/10.1155/2012/185842
Research Article

Effect of Minor Alloying Elements on the Corrosion Behavior of Fe40Al in NaCl-KCl Molten Salts

1CIICAP, Universidad Autónoma del Estado de Morelos, Avendia Universidad 1001, Colonia Chamilpa, 62209 Cuernavaca, MOR, Mexico
2IIE, Gerencia de Procesos Térmicos, Avenida Reforma 120, 62490 Temixco, MOR, Mexico
3Facultad de Ingeniera Mecanica, Universidad Michoacana de San Nicolás de Hidalgo, 58000 Morelia, MICH, Mexico

Received 2 February 2012; Accepted 18 May 2012

Academic Editor: Vesna Mišković-Stanković

Copyright © 2012 G. Salinas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. S. Ni, L. Y. Lu, C. L. Zeng, and Y. Niu, “Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li,0.38K)2CO3 at 650°C,” Corrosion Science, vol. 53, no. 3, pp. 1018–1024, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. S. Li, M. Spiegel, and S. Shimada, “Corrosion behaviour of various model alloys with NaCl-KCl coating,” Materials Chemistry and Physics, vol. 93, no. 1, pp. 217–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. Nobuo Otsuka, “Effects of fuel impurities on the fireside corrosion of boiler tubes in advanced power generating systems—a thermodynamic calculation of deposit chemistry,” Corrosion Science, vol. 44, no. 2, pp. 265–283, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Shinata and Y. Nishi, “NaCl-induced accelerated oxidation of chromium,” Oxidation of Metals, vol. 26, no. 3-4, pp. 201–212, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. N. Hiramatsu, Y. Uematsu, T. Tanaka, and M. Kinugasa, “Effects of alloying elements on NaCl-induced hot corrosion of stainless steels,” Materials Science and Engineering A, vol. 120-121, no. 1, pp. 319–328, 1989. View at Google Scholar · View at Scopus
  6. Y. S. Li, M. Sanchez-Pasten, and M. Spiegel, “High temperature interaction of pure Cr with KCl,” Materials Science Forum, vol. 461-464, pp. 1047–1054, 2004. View at Google Scholar · View at Scopus
  7. F. Wang and Y. Shu, “Influence of Cr content on the corrosion of Fe-Cr alloys: the synergistic effect of NaCl and water vapor,” Oxidation of Metals, vol. 59, no. 3-4, pp. 201–214, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. C. J. Wang and Y. C. Chang, “NaCl-induced hot corrosion of Fe-Mn-Al-C alloys,” Materials Chemistry and Physics, vol. 76, no. 2, pp. 151–161, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. S. Li, Y. Niu, and W. T. Wu, “Accelerated corrosion of pure Fe, Ni, Cr and several Fe-based alloys induced by ZnCl2–KCl at 450°C in oxidizing environment,” Materials Science and Engineering A, vol. 345, no. 3, pp. 964–970, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. F. H. Stott and G. C. Wood, “Internal oxidation,” Materials Science and Technology, vol. 4, no. 12, pp. 1072–1078, 1988. View at Google Scholar · View at Scopus
  11. G. Han and W. D. Cho, “High-temperature corrosion of Fe3Al in 1% Cl2Ar,” Oxidation of Metals, vol. 58, no. 3-4, pp. 391–413, 2002. View at Publisher · View at Google Scholar
  12. F. Lang and Z. Yu, “Corrosion behavior of Fe–40Al sheet in N2–11.2O2–7.5CO2 atmospheres with various SO2 contents at 1273 K,” Intermetallics, vol. 11, no. 2, pp. 135–141, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Kawahara, “High temperature corrosion mechanisms and effect of alloying elements for materials used in waste incineration environment,” Corrosion Science, vol. 44, no. 2, pp. 223–232, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. U. Ducati, G. L. Coccia, and G. Caironi, “Electrochemical evaluation of hot corrosion resistance of metallic materials,” Materials Chemistry and Physics, vol. 8, no. 2, pp. 135–145, 1983. View at Google Scholar · View at Scopus
  15. C. L. Zeng, P. Y. Guo, and W. T. Wu, “Electrochemical impedance spectra for the corrosion of two-phase Cu-15Al alloy in eutectic (Li, K)2CO3 at 650°C in air,” Electrochimica Acta, vol. 49, no. 9-10, pp. 1445–1450, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. C. L. Zeng, W. Wang, and W. T. Wu, “Electrochemical impedance models for molten salt corrosion,” Corrosion Science, vol. 43, no. 4, pp. 787–801, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Shirvani, M. Saremi, A. Nishikata, and T. Tsuru, “Electrochemical study on hot corrosion of Si-modified aluminide coated In–738LC in Na2SO4–20 wt.% NaCl melt at 750°C,” Corrosion Science, vol. 45, no. 5, pp. 1011–1021, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. B. Zhu, G. Lindbergh, and D. Simonsson, “Electrochemical impedance studies of the initial-stage corrosion of 310 S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650°C,” Corrosion Science, vol. 41, no. 9, pp. 1497–1513, 1999. View at Google Scholar
  19. C. Cuevas-Arteaga, J. Uruchurtu-Chavarín, J. Porcayo-Calderon, G. Izquierdo-Montalvo, and J. Gonzalez, “Study of molten salt corrosion of HK–40 m alloy applying linear polarization resistance. And conventional weight loss techniques,” Corrosion Science, vol. 46, no. 11, pp. 2663–2679, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. C. Cuevas-Arteaga, J. Uruchurtu-Chavarín, J. G. González, G. Izquierdo-Montalvo, J. Porcayo-Calderón, and U. Cano, “Corrosion evaluation of Alloy 800 in sulfate/vanadate molten salts,” Corrosion, vol. 60, no. 4, pp. 520–527, 2004. View at Google Scholar · View at Scopus
  21. C. Cuevas-Arteaga, “Corrosion study of HK–40 m alloy exposed to molten sulfate/vanadate mixtures using the electrochemical noise technique,” Corrosion Science, vol. 50, no. 3, pp. 650–663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Gonzalez-Rodriguez, O. L. Arenas, J. Porcayo-Calderon, V. M. Salinas-Bravo, M. Casales, and A. Martinez-Villafañe, “An electrochemical study of the effect of B on the corrosion of atomized Fe40Al intermetallics in molten Na2SO4,” High Temperature Materials and Processes, vol. 25, no. 2, pp. 293–301, 2006. View at Google Scholar · View at Scopus