Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2012, Article ID 646142, 9 pages
Research Article

State of the Art on Cactus Additions in Alkaline Media as Corrosion Inhibitors

1Construction Materials Laboratory, Universidad Marista de Querétaro, Marte No. 2, Colonia Centro, 76000 Querétaro, QRO, Mexico
2Vehicle Engineering and Structural Integrity Coordination, Instituto Mexicano del Transporte, km 12 Carretera Querétaro-Galindo, 76703 Sanfandila, QRO, Mexico
3Materials Laboratory, Facultad de Ingeniería, Universidad Michoacana de San Nicolás de Hidalgo, 58030 Morelia, MICH, Mexico

Received 29 February 2012; Accepted 20 May 2012

Academic Editor: Facundo Almeraya

Copyright © 2012 A. A. Torres-Acosta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Ashassi-Sorkhabi, M. R. Majidi, and K. Seyyedi, “Investigation of inhibition effect of some amino acids against steel corrosion in HCl solution,” Applied Surface Science, vol. 225, no. 1–4, pp. 176–185, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Y. El-Etre, “Inhibition of aluminum corrosion using Opuntia extract,” Corrosion Science, vol. 45, no. 11, pp. 2485–2495, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Sáenz, E. Sepúlveda, and B. Matsuhiro, “Opuntia spp mucilage's: a functional component with industrial perspectives,” Journal of Arid Environments, vol. 57, no. 3, pp. 275–290, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. F. M. Goycoolea and A. Cárdenas, “Pectins from opuntia spp: a short review,” Journal of the Professional Association for Cactus Development, vol. 5, pp. 17–29, 2003. View at Google Scholar · View at Scopus
  5. A. A. Torres-Acosta, M. Martínez-Madrid, D. C. Loveday, and M. R. Silsbee, “Nopal and aloe vera additions in concrete: electrochemical behavior of the reinforcing steel,” in Proceedings of the Symposium New Developments in the Protection of Steel in Concrete, no. 05269, Houston, Tex, USA, April 2005.
  6. A. A. Torres-Acosta, W. Martínez-Madrid, M. G. Lomeli-Gonzalez, and A. Perez-Gallardo, “Cactus-based additions as corrosion inhibitor for reinforcing steel in concrete,” Tech. Rep. 328, Instituto Mexicano del Transporte, Queretaro, Mexico, 2009. View at Google Scholar
  7. A. A. Torres-Acosta, “Opuntia-Ficus-Indica (Nopal) mucilage as a steel corrosion inhibitor in alkaline media,” Journal of Applied Electrochemistry, vol. 37, no. 7, pp. 835–841, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. N. S. Berke, M. P. Dallaire, M. C. Hicks, and R. J. Hoopes, “Corrosion of steel in cracked concrete,” Corrosion, vol. 49, no. 11, pp. 934–943, 1993. View at Google Scholar · View at Scopus