Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2013, Article ID 824659, 11 pages
http://dx.doi.org/10.1155/2013/824659
Research Article

Combating Corrosion Degradation of Turbine Materials Using HVOF Sprayed 25% (Cr3C2-25(Ni20Cr)) + NiCrAlY Coating

1Metallurgical & Materials Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India
2Mechanical Engineering Department, National Institute of Technology Karnataka, Surathkal 575025, India

Received 16 July 2013; Revised 27 September 2013; Accepted 29 September 2013

Academic Editor: Ramazan Solmaz

Copyright © 2013 N. Jegadeeswaran et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Cho, D. M. Lee, J. H. Lee, K. H. Bang, and B. W. Lee, “Thermal oxidation behavior of ceramic-coated Ni-Cr-base superalloys,” Surface and Coatings Technology, vol. 202, no. 22-23, pp. 5625–5628, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Anuwar, R. Jayaganthan, V. K. Tewari, and N. Arivazhagan, “A study on the hot corrosion behavior of Ti-6Al-4V alloy,” Materials Letters, vol. 61, no. 7, pp. 1483–1488, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. R. Krishna, D. K. Das, V. Singh, and S. V. Joshi, “Role of Pt content in the microstructural development and oxidation performance of Pt-aluminide coatings produced using a high-activity aluminizing process,” Materials Science and Engineering A, vol. 251, no. 1-2, pp. 40–47, 1998. View at Google Scholar · View at Scopus
  4. K. L. Luthra and C. L. Briant, “Mechanism of adhesion of alumina on MCrAlY alloys,” Oxidation of Metals, vol. 26, no. 5-6, pp. 397–416, 1986. View at Publisher · View at Google Scholar · View at Scopus
  5. D. W. McKee and K. L. Luthra, “Plasma-sprayed coatings for titanium alloy oxidation protection,” Surface and Coatings Technology, vol. 56, no. 2, pp. 109–117, 1993. View at Google Scholar · View at Scopus
  6. I. Gurappa, “Protection of titanium alloy components against high temperature corrosion,” Materials Science and Engineering A, vol. 356, no. 1-2, pp. 372–380, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. H. Lee, P. C. Tsai, and J. W. Lee, “Cyclic oxidation behavior and microstructure evolution of aluminized, Pt-aluminized high velocity oxygen fuel sprayed CoNiCrAlY coatings,” Thin Solid Films, vol. 517, no. 17, pp. 5253–5258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. S. Chatha, H. S. Sidhu, and B. S. Sidhu, “Characterisation and corrosion-erosion behavior of carbide based thermal spray coatings,” Journal of Minerals and Materials Characterization and Engineering, vol. 11, no. 6, pp. 569–586, 2012. View at Google Scholar
  9. N. Eliaz, G. Shemesh, and R. M. Latanision, “Hot corrosion in gas turbine components,” Engineering Failure Analysis, vol. 9, no. 1, pp. 31–43, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. N. Khan and J. Lu, “Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling,” Surface and Coatings Technology, vol. 166, no. 1, pp. 37–43, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. H. L. Tsai and P. C. Tsai, “Thermal cyclic response of laser-glazed plasma-sprayed ZrO2-19.5wt.%Y2O3/Ni-22Cr-10Al-1Y thermal barrier coatings,” Materials Science and Engineering A, vol. 177, no. 1-2, pp. 227–232, 1994. View at Google Scholar · View at Scopus
  12. H. L. Tsai and P. C. Tsai, “Performance of laser-glazed plasma-sprayed (ZrO2-12wt.%Y2O3)/(Ni-22wt.%Cr-10wt.%Al-1wt.%Y) thermal barrier coatings in cyclic oxidation tests,” Surface and Coatings Technology, vol. 71, no. 1, pp. 53–59, 1995. View at Google Scholar · View at Scopus
  13. S. Kamal, R. Jayaganthan, S. Prakash, and S. Kumar, “Hot corrosion behavior of detonation gun sprayed Cr3C2-NiCr coatings on Ni and Fe-based superalloys in Na2SO4-60% V2O5 environment at 900°C,” Journal of Alloys and Compounds, vol. 463, no. 1-2, pp. 358–372, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. K. J. Stein, B. S. Schorr, and A. R. Marder, “Erosion of thermal spray MCr-Cr3C2 cermet coatings,” Wear, vol. 224, no. 1, pp. 153–159, 1999. View at Google Scholar · View at Scopus
  15. H. Singh, D. Puri, and S. Prakash, “Some studies on hot corrosion performance of plasma sprayed coatings on a Fe-based superalloy,” Surface and Coatings Technology, vol. 192, no. 1, pp. 27–38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Kamal, R. Jayaganthan, and S. Prakash, “Evaluation of cyclic hot corrosion behaviour of detonation gun sprayed Cr3C2-25%NiCr coatings on nickel- and iron-based superalloys,” Surface and Coatings Technology, vol. 203, no. 8, pp. 1004–1013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. H. S. Sidhu, B. S. Sidhu, and S. Prakash, “Solid particle erosion of HVOF sprayed NiCr and Stellite-6 coatings,” Surface and Coatings Technology, vol. 202, no. 2, pp. 232–238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Bolelli, V. Cannillo, L. Lusvarghi, M. Montorsi, F. P. Mantini, and M. Barletta, “Microstructural and tribological comparison of HVOF-sprayed and post-treated M-Mo-Cr-Si (M = Co, Ni) alloy coatings,” Wear, vol. 263, no. 7–12, pp. 1397–1416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. S. H. Zhang, T. Y. Cho, J. H. Yoon et al., “Characterization of microstructure and surface properties of hybrid coatings of WC-CoCr prepared by laser heat treatment and high velocity oxygen fuel spraying,” Materials Characterization, vol. 59, no. 10, pp. 1412–1418, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Hot corrosion resistance of high-velocity oxyfuel sprayed coatings on a nickel-base superalloy in molten salt environment,” Journal of Thermal Spray Technology, vol. 15, no. 3, pp. 387–399, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Study of molten salt corrosion of high velocity oxy-fuel sprayed cermet and nickel-based coatings at 900°C,” Metallurgical and Materials Transactions A, vol. 38, no. 1, pp. 77–85, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. T. S. Sidhu, A. Malik, S. Prakash, and R. D. Agrawal, “Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys at 800°C,” Journal of Thermal Spray Technology, vol. 16, no. 5-6, pp. 844–849, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Lotfi, “Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating,” Transactions of Nonferrous Metals Society of China, vol. 20, no. 2, pp. 243–247, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. F. H. Yuan, Z. X. Chen, Z. W. Huang, Z. G. Wang, and S. J. Zhu, “Oxidation behavior of thermal barrier coatings with HVOF and detonation-sprayed NiCrAlY bondcoats,” Corrosion Science, vol. 50, no. 6, pp. 1608–1617, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. P. Fauchais, M. Fukumoto, A. Vardelle, and M. Vardelle, “Knowledge concerning splat formation: an invited review,” Journal of Thermal Spray Technology, vol. 13, no. 3, pp. 337–360, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Studies on the properties of high-velocity oxy-fuel thermal spray coatings for higher temperature applications,” Materials Science, vol. 41, no. 6, pp. 805–823, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. T. S. Sidhu, S. Prakash, and R. D. Agrawal, “Characterizations and hot corrosion resistance of Cr3C2-NiCr coating on Ni-base superalloys in an aggressive environment,” Journal of Thermal Spray Technology, vol. 15, no. 4, pp. 811–816, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. R. A. Neiser, M. F. Smith, and R. C. Dykhuizen, “Oxidation in Wire HVOF-Sprayed Steel,” Journal of Thermal Spray Technology, vol. 7, no. 4, pp. 537–545, 1998. View at Google Scholar · View at Scopus
  29. S. N. Tiwari and S. Prakash, “Studies on the hot corrosion behavior of some superalloys,” in Proceedings of the Symposium on Localised Corrosion and Environmental Cracking (SOLCEC '97), Kalpakkam, India, January 1997.
  30. H. Singh, D. Puri, and S. Prakash, “An overview of Na2SO4 and/or V2O5 induced hot corrosion of Fe- and Ni-Based superalloys,” Reviews on Advanced Materials Science, vol. 16, no. 1-2, pp. 27–50, 2007. View at Google Scholar · View at Scopus
  31. D. C. Bolles, “HVOF thermal spraying: an alternative to hard chrome plating,” Welding Journal, vol. 74, no. 10, pp. 31–34, 1995. View at Google Scholar · View at Scopus
  32. S. Kamal, R. Jayaganthan, and S. Prakash, “High temperature cyclic oxidation and hot corrosion behaviours of superalloys at 900°C,” Bulletin of Materials Science, vol. 33, no. 3, pp. 299–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Toma, W. Brandl, and U. Köster, “The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings,” Oxidation of Metals, vol. 53, no. 1-2, pp. 125–137, 2000. View at Google Scholar · View at Scopus
  34. G. Sreedhar, M. M. Alam, and V. S. Raja, “Hot corrosion behaviour of plasma sprayed YSZ/Al2O3 dispersed NiCrAlY coatings on Inconel-718 superalloy,” Surface and Coatings Technology, vol. 204, no. 3, pp. 291–299, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Jiang, X. Peng, Z. B. Bao et al., “Preparation and hot corrosion behaviour of a MCrAlY + AlSiY composite coating,” Corrosion Science, vol. 50, no. 11, pp. 3213–3220, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. B. Bao, Q. M. Wang, W. Z. Li et al., “Preparation and hot corrosion behaviour of an Al-gradient NiCoCrAlYSiB coating on a Ni-base superalloy,” Corrosion Science, vol. 51, no. 4, pp. 860–867, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. R. A. Mahesh, R. Jayaganthan, and S. Prakash, “Evaluation of hot corrosion behaviour of HVOF sprayed NiCrAl coating on superalloys at 900°C,” Materials Chemistry and Physics, vol. 111, no. 2-3, pp. 524–533, 2008. View at Publisher · View at Google Scholar · View at Scopus