Table of Contents Author Guidelines Submit a Manuscript
International Journal of Corrosion
Volume 2018, Article ID 5949042, 11 pages
Research Article

Cymbopogon citratus and NaNO2 Behaviours in 3.5% NaCl-Immersed Steel-Reinforced Concrete: Implications for Eco-Friendly Corrosion Inhibitor Applications for Steel in Concrete

1Mechanical Engineering Department, Covenant University, Ota, Nigeria
2Chemical and Metallurgical Engineering Department, Tshwane University of Technology, Pretoria, South Africa
3Petroleum Engineering Department, Covenant University, Ota, Nigeria

Correspondence should be addressed to Joshua Olusegun Okeniyi; gn.ude.ytisrevinutnanevoc@iyineko.auhsoj

Received 30 October 2017; Revised 14 January 2018; Accepted 29 January 2018; Published 1 April 2018

Academic Editor: Tuan Anh Nguyen

Copyright © 2018 Joshua Olusegun Okeniyi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


This paper studies behaviours of Cymbopogon citratus leaf-extract and NaNO2, used as equal-mass admixture models, in 3.5% NaCl-immersed steel-reinforced concrete by nondestructive electrochemical methods and by compressive-strength improvement/reduction effects. Corrosion-rate, corrosion-current, and corrosion-potential constitute electrochemical test-techniques while compressive-strength effect investigations followed ASTM C29 and ASTM C33, in experiments using positive-controls for the electrochemical and compressive-strength studies. Analyses of the different electrochemical test-results mostly portrayed agreements on reinforcing-steel anticorrosion effects by the concentrations of natural plant and of chemical admixtures in the saline/marine simulating-environment and in the distilled H2O (electrochemical positive control) of steel-reinforced concrete immersions. These indicated that little amount (0.0833% cement for concrete-mixing) of Cymbopogon citratus leaf-extract was required for optimal inhibition efficiency, η = 99.35%, on reinforcing-steel corrosion, in the study. Results of compressive-strength change factor also indicated that the 0.0833% Cymbopogon citratus concentration outperformed NaNO2 admixture concentrations also in compressive-strength improvement effects on the NaCl-immersed steel-reinforced concrete. These established implications, from the study, on the suitability of the eco-friendly Cymbopogon citratus leaf-extract for replacing the also highly effective NaNO2 inhibitor of steel-in-concrete corrosion in concrete designed for the saline/marine service-environment.