Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2010 (2010), Article ID 215158, 21 pages
http://dx.doi.org/10.1155/2010/215158
Review Article

The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies

1Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9 rue Edward Steichen, 2540 Luxembourg, Luxembourg
2Dipartimento di Biologia, Università di Roma di Roma Tor Vergata, Via Ricerca Scientifica snc, 00133 Rome, Italy

Received 16 July 2009; Accepted 18 December 2009

Academic Editor: Simone Fulda

Copyright © 2010 Cyril Sobolewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. I. Kulinsky, “Biochemical aspects of inflammation,” Biochemistry, vol. 72, no. 6, pp. 595–607, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. R. N. DuBois, S. B. Abramson, L. Crofford et al., “Cyclooxygenase in biology and disease,” FASEB Journal, vol. 12, no. 12, pp. 1063–1073, 1998. View at Google Scholar · View at Scopus
  3. F. Balkwill and A. Mantovani, “Inflammation and cancer: back to Virchow?” The Lancet, vol. 357, no. 9255, pp. 539–545, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. L. K. Dennis, C. F. Lynch, and J. C. Torner, “Epidemiologic association between prostatitis and prostate cancer,” Urology, vol. 60, no. 1, pp. 78–83, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. L. R. Howe, “Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer,” Breast Cancer Research, vol. 9, no. 4, p. 210, 2007. View at Google Scholar
  6. L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. M. Suganuma, S. Okabe, M. W. Marino, A. Sakai, E. Sueoka, and H. Fujiki, “Essential role of tumor necrosis factor α (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice,” Cancer Research, vol. 59, no. 18, pp. 4516–4518, 1999. View at Google Scholar · View at Scopus
  8. M. Yao, E. C. Lam, C. R. Kelly, W. Zhou, and M. M. Wolfe, “Cyclooxygenase-2 selective inhibition with NS-398 suppresses proliferation and invasiveness and delays liver metastasis in colorectal cancer,” British Journal of Cancer, vol. 90, no. 3, pp. 712–719, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. R. N. DuBois and W. E. Smalley, “Cyclooxygenase, NSAIDs, and colorectal cancer,” Journal of Gastroenterology, vol. 31, no. 6, pp. 898–906, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Eisinger, S. M. Prescott, D. A. Jones, and D. M. Stafforini, “The role of cyclooxygenase-2 and prostaglandins in colon cancer,” Prostaglandins and Other Lipid Mediators, vol. 82, no. 1–4, pp. 147–154, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. G. Steinbach, P. M. Lynch, R. K. S. Phillips et al., “The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis,” The New England Journal of Medicine, vol. 342, no. 26, pp. 1946–1952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. S. P. Hussain and C. C. Harris, “Inflammation and cancer: an ancient link with novel potentials,” International Journal of Cancer, vol. 121, no. 11, pp. 2373–2380, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. S. Cristofanon, F. Morceau, A. I. Scovassi, M. Dicato, L. Ghibelli, and M. Diederich, “Oxidative, multistep activation of the noncanonical NF-κB pathway via disulfide Bcl-3/p50 complex,” FASEB Journal, vol. 23, pp. 45–57, 2009. View at Google Scholar
  14. R. Chen, A. B. Alvero, D. A. Silasi, and G. Mor, “Inflammation, cancer and chemoresistance: taking advantage of the toll-like receptor signaling pathway,” American Journal of Reproductive Immunology, vol. 57, no. 2, pp. 93–107, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. M. D'Alessio, C. Cerella, C. Amici et al., “Glutathione depletion up-regulates Bcl-2 in BSO-resistant cells,” FASEB Journal, vol. 18, no. 13, pp. 1609–1611, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. W. W. Lin and M. Karin, “A cytokine-mediated link between innate immunity, inflammation, and cancer,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1175–1183, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. E. Pikarsky, R. M. Porat, I. Stein et al., “NF-κB functions as a tumour promoter in inflammation-associated cancer,” Nature, vol. 431, no. 7007, pp. 461–466, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. S. T. Palayoor, M. Y. Youmell, S. K. Calderwood, C. N. Coleman, and B. D. Price, “Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen,” Oncogene, vol. 18, no. 51, pp. 7389–7394, 1999. View at Google Scholar · View at Scopus
  19. U. Kordes, D. Krappmann, V. Heissmeyer, W. D. Ludwig, and C. Scheidereit, “Transcription factor NF-κB is constitutively activated in acute lymphoblastic leukemia cells,” Leukemia, vol. 14, no. 3, pp. 399–402, 2000. View at Google Scholar · View at Scopus
  20. G. Tricot, “New insights into role of microenvironment in multiple myeloma,” The Lancet, vol. 355, no. 9200, pp. 248–250, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. N. V. Chandrasekharan and D. L. Simmons, “The cyclooxygenases,” Genome Biology, vol. 5, no. 9, article 241, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  22. S. Narumiya and G. A. FitzGerald, “Genetic and pharmacological analysis of prostanoid receptor function,” Journal of Clinical Investigation, vol. 108, no. 1, pp. 25–30, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. R. G. Ramsay, D. Ciznadija, M. Vanevski, and T. Mantamadiotis, “Transcriptional regulation of cyclo-oxygenase expression: three pillars of control,” International Journal of Immunopathology and Pharmacology, vol. 16, no. 2, supplement, pp. 59–67, 2003. View at Google Scholar · View at Scopus
  24. B. Hinz and K. Brune, “Cyclooxygenase-2–10 years later,” Journal of Pharmacology and Experimental Therapeutics, vol. 300, no. 2, pp. 367–375, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. R. G. Kurumbail, A. M. Stevens, J. K. Gierse et al., “Structural basis for selective inhibition of cyciooxygenase-2 by anti-inflammatory agents,” Nature, vol. 384, no. 6610, pp. 644–648, 1996. View at Google Scholar · View at Scopus
  26. F. H. Sarkar, S. Adsule, Y. Li, and S. Padhye, “Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy,” Mini-Reviews in Medicinal Chemistry, vol. 7, no. 6, pp. 599–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Kis, J. A. Snipes, T. Isse, K. Nagy, and D. W. Busija, “Putative cyclooxygenase-3 expression in rat brain cells,” Journal of Cerebral Blood Flow and Metabolism, vol. 23, no. 11, pp. 1287–1292, 2003. View at Google Scholar · View at Scopus
  28. N. V. Chandrasekharan, H. Dai, K. L. T. Roos et al., “COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 21, pp. 13926–13931, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. B. Hinz, O. Cheremina, and K. Brune, “Acetaminophen (paracetamol) is a selective cyclooxygenase-2 inhibitor in man,” FASEB Journal, vol. 22, no. 2, pp. 383–390, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. Y. Cao and S. M. Prescott, “Many actions of cyclooxygenase-2 in cellular dynamics and in cancer,” Journal of Cellular Physiology, vol. 190, no. 3, pp. 279–286, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  31. A. Ristimaki, A. Sivula, J. Lundin et al., “Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer,” Cancer Research, vol. 62, no. 3, pp. 632–635, 2002. View at Google Scholar · View at Scopus
  32. P. Secchiero, E. Barbarotto, A. Gonelli et al., “Potential pathogenetic implications of cyclooxygenase-2 overexpression in B chronic lymphoid leukemia cells,” American Journal of Pathology, vol. 167, no. 6, pp. 1599–1607, 2005. View at Google Scholar · View at Scopus
  33. Y. Nakanishi, R. Kamijo, K. Takizawa, M. Hatori, and M. Nagumo, “Inhibitors of cyclooxygenase-2 (COX-2) suppressed the proliferation and differentiation of human leukaemia cell lines,” European Journal of Cancer, vol. 37, no. 12, pp. 1570–1578, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. T. Wun, H. McKnight, and J. M. Tuscano, “Increased cyclooxygenase-2 (COX-2): a potential role in the pathogenesis of lymphoma,” Leukemia Research, vol. 28, no. 2, pp. 179–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. M. W. Chan, C. Y. Wong, A. S. Cheng et al., “Targeted inhibition of COX-2 expression by RNA interference suppresses tumor growth and potentiates chemosensitivity to cisplatin in human gastric cancer cells,” Oncology Reports, vol. 18, no. 6, pp. 1557–1562, 2007. View at Google Scholar · View at Scopus
  36. G. E. Johnson, V. N. Ivanov, and T. K. Hei, “Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival,” Apoptosis, vol. 13, no. 6, pp. 790–802, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. S. T. Palayoor, M. J. Arayankalayil, A. Shoaibi, and C. N. Coleman, “Radiation sensitivity of human carcinoma cells transfected with small interfering RNA targeted against cyclooxygenase-2,” Clinical Cancer Research, vol. 11, no. 19, pp. 6980–6986, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. M. Philip, D. A. Rowley, and H. Schreiber, “Inflammation as a tumor promoter in cancer induction,” Seminars in Cancer Biology, vol. 14, no. 6, pp. 433–439, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. A. Zrieki, R. Farinotti, and M. Buyse, “Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal caco-2 cell line,” Pharmaceutical Research, vol. 25, no. 9, pp. 1991–2001, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. E. M. Choi, S. J. Kwak, Y. M. Kim et al., “COX-2 inhibits anoikis by activation of the PI-3K/Akt pathway in human bladder cancer cells,” Experimental and Molecular Medicine, vol. 37, no. 3, pp. 199–203, 2005. View at Google Scholar · View at Scopus
  41. R. M. Breyer, C. K. Bagdassarian, S. A. Myers, and M. D. Breyer, “Prostanoid receptors: subtypes and signaling,” Annual Review of Pharmacology and Toxicology, vol. 41, pp. 661–690, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. J. Grossmann, “Molecular mechanisms of “detachment-induced apoptosis—anoikis”,” Apoptosis, vol. 7, no. 3, pp. 247–260, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. J. R. Woodgett, “Regulation and functions of the glycogen synthase kinase-3 subfamily,” Seminars in Cancer Biology, vol. 5, no. 4, pp. 269–275, 1994. View at Google Scholar · View at Scopus
  44. N. K. Boughton Smith, C. J. Hawkey, and B. J. R. Whittle, “Biosynthesis of lipoxygenase and cyclo-oxygenase products from [14C]-arachidonic acid by human colonic mucosa,” Gut, vol. 24, no. 12, pp. 1176–1182, 1983. View at Google Scholar · View at Scopus
  45. V. W. Yang, J. M. Shields, S. R. Hamilton et al., “Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis,” Cancer Research, vol. 58, no. 8, pp. 1750–1753, 1998. View at Google Scholar · View at Scopus
  46. H. Sheng, J. Shao, J. D. Morrow, R. D. Beauchamp, and R. N. DuBois, “Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells,” Cancer Research, vol. 58, no. 2, pp. 362–366, 1998. View at Google Scholar · View at Scopus
  47. G. A. Doherty, S. M. Byrne, E. S. Molloy et al., “Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer,” BMC Cancer, vol. 9, article 207, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  48. L. Damstrup, S. K. Kuwada, P. J. Dempsey et al., “Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis,” British Journal of Cancer, vol. 80, no. 7, pp. 1012–1019, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. Q. B. She, D. B. Solit, Q. Ye, K. E. O'Reilly, J. Lobo, and N. Rosen, “The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells,” Cancer Cell, vol. 8, no. 4, pp. 287–297, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. T. G. Tessner, F. Muhale, T. E. Riehl, S. Anant, and W. F. Stenson, “Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and Bax translocation,” Journal of Clinical Investigation, vol. 114, no. 11, pp. 1676–1685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Burlacu, “Regulation of apoptosis by Bcl-2 family proteins,” Journal of Cellular and Molecular Medicine, vol. 7, no. 3, pp. 249–257, 2003. View at Google Scholar · View at Scopus
  52. T. Yamaki, K. Endoh, M. Miyahara et al., “Prostaglandin E2 activates Src signaling in lung adenocarcinoma cell via EP3,” Cancer Letters, vol. 214, no. 1, pp. 115–120, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. L. P. Billen, C. L. Kokoski, J. F. Lovell, B. Leber, and D. W. Andrews, “Bcl-XL inhibits membrane permeabilization by competing with Bax,” PLoS Biology, vol. 6, no. 6, article e147, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. Z. A. Stewart, M. D. Westfall, and J. A. Pietenpol, “Cell-cycle dysregulation and anticancer therapy,” Trends in Pharmacological Sciences, vol. 24, no. 3, pp. 139–145, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. M. D. Larrea, J. Liang, T. Da Silva et al., “Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4,” Molecular and Cellular Biology, vol. 28, no. 20, pp. 6462–6472, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. Pagano, S. W. Tam, A. M. Theodoras et al., “Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27,” Science, vol. 269, no. 5224, pp. 682–685, 1995. View at Google Scholar · View at Scopus
  57. J. L. Bos, “ras Oncogenes in human cancer: a review,” Cancer Research, vol. 49, no. 17, pp. 4682–4689, 1989. View at Google Scholar · View at Scopus
  58. C. Tsatsanis, A. Androulidaki, M. Venihaki, and A. N. Margioris, “Signalling networks regulating cyclooxygenase-2,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 10, pp. 1654–1661, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. T. Yano, G. Zissel, J. Muller-Qernheim, S. Jae Shin, H. Satoh, and T. Ichikawa, “Prostaglandin E2 reinforces the activation of Ras signal pathway in lung adenocarcinoma cells via EP3,” FEBS Letters, vol. 518, no. 1–3, pp. 154–158, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. M. R. Junttila and J. Westermarck, “Mechanisms of MYC stabilization in human malignancies,” Cell Cycle, vol. 7, no. 5, pp. 592–596, 2008. View at Google Scholar · View at Scopus
  61. X. Ma, N. Kundu, S. Rifat, T. Walser, and A. M. Fulton, “Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis,” Cancer Research, vol. 66, no. 6, pp. 2923–2927, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. Majima, I. Hayashi, M. Muramatsu, J. Katada, S. Yamashina, and M. Katori, “Cyclo-oxygenase-2 enhances basic fibroblast growth factor-induced angiogenesis through induction of vascular endothelial growth factor in rat sponge implants,” British Journal of Pharmacology, vol. 130, no. 3, pp. 641–649, 2000. View at Google Scholar · View at Scopus
  63. J. Folkman, “Tumor angiogenesis: therapeutic implications,” The New England Journal of Medicine, vol. 285, no. 21, pp. 1182–1186, 1971. View at Google Scholar · View at Scopus
  64. G. A. Green, “Understanding NSAIDs: from aspirin to COX-2,” Clinical Cornerstone, vol. 3, no. 5, pp. 50–59, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. S. H. Ferreira, S. Moncada, and J. R. Vane, “Indomethacin and aspirin abolish prostaglandin release from the spleen,” Nature, vol. 231, no. 25, pp. 237–239, 1971. View at Google Scholar · View at Scopus
  66. S. Pasa, K. Bayan, M. Kucukoner et al., “The effects of nonsteroidal anti-inflammatory drugs on platelet function and severity of upper gastrointestinal haemorrhage,” Journal of Thrombosis and Thrombolysis, vol. 28, no. 1, pp. 83–89, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  67. M. Hudson, E. Rahme, H. Richard, and L. Pilote, “Risk of congestive heart failure with nonsteroidal antiinflammatory drugs and selective cyclooxygenase 2 inhibitors: a class effect?” Arthritis Care and Research, vol. 57, no. 3, pp. 516–523, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  68. S. Grosch, T. J. Maier, S. Schiffmann, and G. Geisslinger, “Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors,” Journal of the National Cancer Institute, vol. 98, no. 11, pp. 736–747, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  69. W. B. White, G. Faich, A. Whelton et al., “Comparison of thromboembolic events in patients treated with celecoxib, a cyclooxygenase-2 specific inhibitor, versus ibuprofen or diclofenac,” American Journal of Cardiology, vol. 89, no. 4, pp. 425–430, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. M. E. Farkouh, F. W. A. Verheugt, S. Ruland et al., “A comparison of the blood pressure changes of lumiracoxib with those of ibuprofen and naproxen,” Journal of Clinical Hypertension, vol. 10, no. 8, pp. 592–602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Whelton, J. G. Fort, J. A. Puma, D. Normandin, A. E. Bello, and K. M. Verburg, “Cyclooxygenase-2-specific inhibitors and cardiorenal function: a randomized, controlled trial of celecoxib and rofecoxib in older hypertensive osteoarthritis patients,” American Journal of Therapeutics, vol. 8, no. 2, pp. 85–95, 2001. View at Google Scholar · View at Scopus
  72. T. Juhlin, S. Björkman, and P. Höglund, “Cyclooxygenase inhibition causes marked impairment of renal function in elderly subjects treated with diuretics and ACE-inhibitors,” European Journal of Heart Failure, vol. 7, no. 6, pp. 1049–1056, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. S. Z. Zhao, M. W. Reynolds, J. Lefkowith, A. Whelton, and F. M. Arellano, “A comparison of renal-related adverse drug reactions between rofecoxib and celecoxib, based on the World Health Organization/Uppsala Monitoring Centre safety database,” Clinical Therapeutics, vol. 23, no. 9, pp. 1478–1491, 2001. View at Publisher · View at Google Scholar · View at Scopus
  74. T. P. van Staa, L. Smeeth, I. Persson, J. Parkinson, and H. G. M. Leufkens, “What is the harm—benefit ratio of Cox-2 inhibitors?” International Journal of Epidemiology, vol. 37, no. 2, pp. 405–413, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  75. B. D. De Smet, A. M. Fendrick, J. G. Stevenson, and S. J. Bernstein, “Over and under-utilization of cyclooxygenase-2 selective inhibitors by primary care physicians and specialists: the tortoise and the hare revisited,” Journal of General Internal Medicine, vol. 21, no. 7, pp. 694–697, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. A. Strillacci, C. Griffoni, E. Spisni, M. C. Manara, and V. Tomasi, “RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells,” British Journal of Cancer, vol. 94, no. 9, pp. 1300–1310, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  77. H. L. Peng, G. S. Zhang, J. H. Liu, F. J. Gong, and R. J. Li, “Dup-697, a specific COX-2 inhibitor, suppresses growth and induces apoptosis on K562 leukemia cells by cell-cycle arrest and caspase-8 activation,” Annals of Hematology, vol. 87, no. 2, pp. 121–129, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  78. H. Sheng, J. Shao, S. C. Kirkland et al., “Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2,” Journal of Clinical Investigation, vol. 99, no. 9, pp. 2254–2259, 1997. View at Google Scholar · View at Scopus
  79. H. Amano, I. Hayashi, H. Endo et al., “Host prostaglandin E2-EP3 signaling regulates tumor-associated angiogenesis and tumor growth,” Journal of Experimental Medicine, vol. 197, no. 2, pp. 221–232, 2003. View at Publisher · View at Google Scholar · View at Scopus
  80. H. Hochegger, S. Takeda, and T. Hunt, “Cyclin-dependent kinases and cell-cycle transitions: does one fit all?” Nature Reviews Molecular Cell Biology, vol. 9, no. 11, pp. 910–916, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  81. D. Cobrinik, “Pocket proteins and cell cycle control,” Oncogene, vol. 24, no. 17, pp. 2796–2809, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  82. Z. Kelman, “PCNA: structure, functions and interactions,” Oncogene, vol. 14, no. 6, pp. 629–640, 1997. View at Google Scholar · View at Scopus
  83. W. R. Taylor and G. R. Stark, “Regulation of the G2/M transition by p53,” Oncogene, vol. 20, no. 15, pp. 1803–1815, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  84. J. Li, X. Chen, X. Dong, Z. Xu, H. Jiang, and X. Sun, “Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells,” Journal of Gastroenterology and Hepatology, vol. 21, no. 12, pp. 1814–1820, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  85. M. D. Castellone, H. Teramoto, B. O. Williams, K. M. Druey, and J. S. Gutkind, “Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis,” Science, vol. 310, no. 5753, pp. 1504–1510, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  86. B. Xin, Y. Yokoyama, T. Shigeto, and H. Mizunuma, “Anti-tumor effect of non-steroidal anti-inflammatory drugs on human ovarian cancers,” Pathology and Oncology Research, vol. 13, no. 4, pp. 365–369, 2007. View at Google Scholar · View at Scopus
  87. C. Falandry, P. A. Canney, G. Freyer, and L. Y. Dirix, “Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer,” Annals of Oncology, vol. 20, no. 4, pp. 615–620, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. X. F. Xu, C. G. Xie, X. P. Wang et al., “Selective inhibition of cyclooxygenase-2 suppresses the growth of pancreatic cancer cells in vitro and in vivo,” Tohoku Journal of Experimental Medicine, vol. 215, no. 2, pp. 149–157, 2008. View at Publisher · View at Google Scholar · View at Scopus
  89. G. S. Zhang, D. S. Liu, C. W. Dai, and R. J. Li, “Antitumor effects of celecoxib on K562 leukemia cells are mediated by cell-cycle arrest, caspase-3 activation, and downregulation of Cox-2 expression and are synergistic with hydroxyurea or imatinib,” American Journal of Hematology, vol. 81, no. 4, pp. 242–255, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  90. S. Dimmeler, K. Breitschopf, J. Haendeler, and A. M. Zeiher, “Dephosphorylation targets Bcl-2 for ubiquitin-dependent degradation: a link between the apoptosome and the proteasome pathway,” Journal of Experimental Medicine, vol. 189, no. 11, pp. 1815–1822, 1999. View at Publisher · View at Google Scholar · View at Scopus
  91. G. Majno and I. Joris, “Apoptosis, oncosis, and necrosis: an overview of cell death,” American Journal of Pathology, vol. 146, no. 1, pp. 3–15, 1995. View at Google Scholar · View at Scopus
  92. J. F. Fullard, A. Kale, and N. E. Baker, “Clearance of apoptotic corpses,” Apoptosis, vol. 14, no. 8, pp. 1029–1037, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  93. S. Shimohama, “Apoptosis in Alzheimer's disease—an update,” Apoptosis, vol. 5, no. 1, pp. 9–16, 2000. View at Publisher · View at Google Scholar · View at Scopus
  94. S. Coppola and L. Ghibelli, “GSH extrusion and the mitochondrial pathway of apoptotic signalling,” Biochemical Society Transactions, vol. 28, no. 2, pp. 56–61, 2000. View at Google Scholar · View at Scopus
  95. D. C. Henshall, D. P. Bonislawski, S. L. Skradski, J. Q. Lan, R. Meller, and R. P. Simon, “Cleavage of bid may amplify caspase-8-induced neuronal death following focally evoked limbic seizures,” Neurobiology of Disease, vol. 8, no. 4, pp. 568–580, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  96. Y. J. Cha, H. S. Kim, H. Rhim, B. E. Kim, S. W. Jeong, and I. K. Kim, “Activation of caspase-8 in 3-deazaadenosine-induced apoptosis of U-937 cells occurs downstream of caspase-3 and caspase-9 without Fas receptor-ligand interaction,” Experimental and Molecular Medicine, vol. 33, no. 4, pp. 284–292, 2001. View at Google Scholar · View at Scopus
  97. L. Ghibelli, C. Fanelli, G. Rotilio et al., “Rescue of cells from apoptosis by inhibition of active GSH extrusion,” FASEB Journal, vol. 12, no. 6, pp. 479–486, 1998. View at Google Scholar · View at Scopus
  98. M. D'Alessio, M. De Nicola, S. Coppola et al., “Oxidative Bax dimerization promotes its translocation to mitochondria independently of apoptosis,” FASEB Journal, vol. 19, no. 11, pp. 1504–1506, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. L. Zhou and D. C. Chang, “Dynamics and structure of the Bax-Bak complex responsible for releasing mitochondrial proteins during apoptosis,” Journal of Cell Science, vol. 121, no. 13, pp. 2186–2196, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  100. I. Tamm, Y. Wang, E. Sausville et al., “IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs,” Cancer Research, vol. 58, no. 23, pp. 5315–5320, 1998. View at Google Scholar · View at Scopus
  101. J. Chai, C. Du, J. W. Wu, S. Kyin, X. Wang, and Y. Shi, “Structural and biochemical basis of apoptotic activation by Smac/DIABLO,” Nature, vol. 406, no. 6798, pp. 855–862, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. X. H. Liu, S. Yao, A. Kirschenbaum, and A. C. Levine, “NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates Bcl-2 expression in LNCaP cells,” Cancer Research, vol. 58, no. 19, pp. 4245–4249, 1998. View at Google Scholar · View at Scopus
  103. Y. Cao, A. T. Pearman, G. A. Zimmerman, T. M. McIntyre, and S. M. Prescott, “Intracellular unesterified arachidonic acid signals apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 21, pp. 11280–11285, 2000. View at Google Scholar · View at Scopus
  104. S. Jayadev, C. M. Linardic, and Y. A. Hannun, “Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor α,” The Journal of Biological Chemistry, vol. 269, no. 8, pp. 5757–5763, 1994. View at Google Scholar · View at Scopus
  105. B. J. Pettus, C. E. Chalfant, and Y. A. Hannun, “Ceramide in apoptosis: an overview and current perspectives,” Biochimica et Biophysica Acta, vol. 1585, no. 2-3, pp. 114–125, 2002. View at Publisher · View at Google Scholar · View at Scopus
  106. T. A. Chan, P. J. Morin, B. Vogelstein, and K. W. Kinzler, “Mechanisms underlying nonsteroidal antiinflammatory drug-mediated apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 2, pp. 681–686, 1998. View at Publisher · View at Google Scholar · View at Scopus
  107. B. Brüne, A. von Knethen, and K. B. Sandau, “Nitric oxide (NO): an effector of apoptosis,” Cell Death and Differentiation, vol. 6, no. 10, pp. 969–975, 1999. View at Google Scholar · View at Scopus
  108. Y. W. E. Chang, R. Jakobi, A. McGinty, M. Foschi, M. J. Dunn, and A. Sorokin, “Cyclooxygenase 2 promotes cell survival by stimulation of dynein light chain expression and inhibition of neuronal nitric oxide synthase activity,” Molecular and Cellular Biology, vol. 20, no. 22, pp. 8571–8579, 2000. View at Publisher · View at Google Scholar · View at Scopus
  109. L. M. S. Lau, J. K. Wolter, J. T. M. L. Lau et al., “Cyclooxygenase inhibitors differentially modulate p73 isoforms in neuroblastoma,” Oncogene, vol. 28, no. 19, pp. 2024–2033, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  110. M. S. Irwin and F. D. Miller, “p73: regulator in cancer and neural development,” Cell Death and Differentiation, vol. 11, supplement 1, pp. S17–S22, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  111. N. Kim, C. H. Kim, D. W. Ahn et al., “Anti-gastric cancer effects of celecoxib, a selective COX-2 inhibitor, through inhibition of Akt signaling,” Journal of Gastroenterology and Hepatology, vol. 24, no. 3, pp. 480–487, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  112. B. Liu, Z. l. Shi, J. Feng, and H. M. Tao, “Celecoxib, a cyclooxygenase-2 inhibitor, induces apoptosis in human osteosarcoma cell line MG-63 via down-regulation of PI3K/Akt,” Cell Biology International, vol. 32, no. 5, pp. 494–501, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  113. A. L. Hsu, T. T. Ching, D. S. Wang, X. Song, V. M. Rangnekar, and C. S. Chen, “The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2,” The Journal of Biological Chemistry, vol. 275, no. 15, pp. 11397–11403, 2000. View at Publisher · View at Google Scholar · View at Scopus
  114. S. Honjo, M. Osaki, T. D. Ardyanto, T. Hiramatsu, N. Maeta, and H. Ito, “COX-2 inhibitor, NS398, enhances fas-mediated apoptosis via modulation of the PTEN-Akt pathway in human gastric carcinoma cell lines,” DNA and Cell Biology, vol. 24, no. 3, pp. 141–147, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  115. J. Y. Liou, D. Ghelani, S. Yeh, and K. K. Wu, “Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3ε,” Cancer Research, vol. 67, no. 7, pp. 3185–3191, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  116. Y. Yamamoto, M. J. Yin, K. M. Lin, and R. B. Gaynor, “Sulindac inhibits activation of the NF-κB pathway,” The Journal of Biological Chemistry, vol. 274, no. 38, pp. 27307–27314, 1999. View at Publisher · View at Google Scholar · View at Scopus
  117. B. Poligone and A. S. Baldwin, “Positive and negative regulation of NF-κB by COX-2: roles of different prostaglandins,” The Journal of Biological Chemistry, vol. 276, no. 42, pp. 38658–38664, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  118. M. K. Park, Y. J. Kang, Y. M. Ha et al., “EP2 receptor activation by prostaglandin E2 leads to induction of HO-1 via PKA and PI3K pathways in C6 cells,” Biochemical and Biophysical Research Communications, vol. 379, no. 4, pp. 1043–1047, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. S. Martin, D. C. Phillips, K. Szekely-Szucs, L. Elghazi, F. Desmots, and J. A. Houghton, “Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-inducing signaling complex components into ceramide-enriched caveolae,” Cancer Research, vol. 65, no. 24, pp. 11447–11458, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  120. R. Tang, A.-M. Faussat, J.-Y. Perrot et al., “Zosuquidar restores drug sensitivity in P-glycoprotein expressing acute myeloid leukemia (AML),” BMC Cancer, vol. 8, article 51, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  121. Y. Yamanaka, K. Shiraki, T. Inoue et al., “COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis,” International Journal of Molecular Medicine, vol. 18, no. 1, pp. 41–47, 2006. View at Google Scholar · View at Scopus
  122. M. Casado, B. Molla, R. Roy et al., “Protection against Fas-induced liver apoptosis in transgenic mice expressing cyclooxygenase 2 in hepatocytes,” Hepatology, vol. 45, no. 3, pp. 631–638, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. U. C. Nzeako, M. E. Guicciardi, J. H. Yoon, S. F. Bronk, and G. J. Gores, “COX-2 inhibits Fas-mediated apoptosis in cholangiocarcinoma cells,” Hepatology, vol. 35, no. 3, pp. 552–559, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  124. S. M. Frisch and E. Ruoslahti, “Integrins and anoikis,” Current Opinion in Cell Biology, vol. 9, no. 5, pp. 701–706, 1997. View at Publisher · View at Google Scholar · View at Scopus
  125. F. G. Giancotti and E. Ruoslahti, “Integrin signaling,” Science, vol. 285, no. 5430, pp. 1028–1032, 1999. View at Publisher · View at Google Scholar · View at Scopus
  126. R. R. Joseph, E. Yazer, Y. Hanakawa, and A. W. Stadnyk, “Prostaglandins and activation of AC/cAMP prevents anoikis in IEC-18,” Apoptosis, vol. 10, no. 6, pp. 1221–1233, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  127. S. Kanayama, Y. Yamada, R. Kawaguchi, Y. Tsuji, S. Haruta, and H. Kobayashi, “Hepatocyte growth factor induces anoikis resistance by up-regulation of cyclooxygenase-2 expression in uterine endometrial cancer cells,” Oncology Reports, vol. 19, no. 1, pp. 117–122, 2008. View at Google Scholar · View at Scopus
  128. L. Beviglia, K. Matsumoto, C. S. Lin, B. L. Ziober, and R. H. Kramer, “Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression,” International Journal of Cancer, vol. 74, no. 3, pp. 301–309, 1997. View at Publisher · View at Google Scholar · View at Scopus
  129. G. Dong, Z. Chen, Z. Y. Li, N. T. Yeh, C. C. Bancroft, and C. Van Waes, “Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma,” Cancer Research, vol. 61, no. 15, pp. 5911–5918, 2001. View at Google Scholar · View at Scopus
  130. S. Wagatsuma, R. Konno, S. Sato, and A. Yajima, “Tumor angiogenesis, hepatocyte growth factor, and c-Met expression in endometrial carcinoma,” Cancer, vol. 82, no. 3, pp. 520–530, 1998. View at Google Scholar · View at Scopus
  131. Q. Zeng, L. K. McCauley, and C. Y. Wang, “Hepatocyte growth factor inhibits anoikis by induction of activator protein 1-dependent cyclooxygenase-2: implication in head and neck squamous cell carcinoma progression,” The Journal of Biological Chemistry, vol. 277, no. 51, pp. 50137–50142, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. M. C. Maiuri, E. Zalckvar, A. Kimchi, and G. Kroemer, “Self-eating and self-killing: crosstalk between autophagy and apoptosis,” Nature Reviews Molecular Cell Biology, vol. 8, no. 9, pp. 741–752, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  133. C. Bauvy, P. Gane, S. Arico, P. Codogno, and E. Ogier-Denis, “Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29,” Experimental Cell Research, vol. 268, no. 2, pp. 139–149, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. P. M. Lynch, “COX-2 inhibition in clinical cancer prevention,” Oncology, vol. 15, no. 3, supplement 5, pp. 21–26, 2001. View at Google Scholar · View at Scopus
  135. N. Arber, “Cyclooxygenase-2 inhibitors in colorectal cancer prevention: point,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 8, pp. 1852–1857, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. B. Arun and P. Goss, “The role of COX-2 inhibition in breast cancer treatment and prevention,” Seminars in Oncology, vol. 31, supplement 7, pp. 22–29, 2004. View at Publisher · View at Google Scholar · View at Scopus
  137. D. W. Bell, J. M. Varley, T. E. Szydlo et al., “Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome,” Science, vol. 286, no. 5449, pp. 2528–2531, 1999. View at Publisher · View at Google Scholar · View at Scopus
  138. K. R. Grimes, G. W. Warren, F. Fang, Y. Xu, and W. H. St Clair, “Cyclooxygenase-2 inhibitor, nimesulide, improves radiation treatment against non-small cell lung cancer both in vitro and in vivo,” Oncology Reports, vol. 16, no. 4, pp. 771–776, 2006. View at Google Scholar · View at Scopus
  139. C. Czembirek, C. Eder-Czembirek, B. M. Erovic et al., “The cyclooxygenase-2 inhibitor nimesulide, a nonsteroidal analgesic, decreases the effect of radiation therapy in head-and-neck cancer cells,” Strahlentherapie und Onkologie, vol. 185, no. 5, pp. 310–317, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. B. A. Chabner and T. G. Roberts Jr., “Chemotherapy and the war on cancer,” Nature Reviews Cancer, vol. 5, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  141. Y. A. Luqmani, “Mechanisms of drug resistance in cancer chemotherapy,” Medical Principles and Practice, vol. 14, supplement 1, pp. 35–48, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  142. U. Puhlmann, C. Ziemann, G. Ruedell et al., “Impact of the cyclooxygenase system on doxorubicin-induced functional multidrug resistance 1 overexpression and doxorubicin sensitivity in acute myeloid leukemic HL-60 cells,” Journal of Pharmacology and Experimental Therapeutics, vol. 312, no. 1, pp. 346–354, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  143. V. A. Patel, M. J. Dunn, and A. Sorokin, “Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2,” The Journal of Biological Chemistry, vol. 277, no. 41, pp. 38915–38920, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  144. X. J. Chen, W. Xiao, X. Qu, and S. Y. Zhou, “NS-398 enhances the efficacy of gemcitabine against lung adenocarcinoma through up-regulation of p21WAF1 and p27KIP1 protein,” Neoplasma, vol. 55, no. 3, pp. 200–204, 2008. View at Google Scholar · View at Scopus
  145. T. J. Dougherty, “An update on photodynamic therapy applications,” Journal of Clinical Laser Medicine and Surgery, vol. 20, no. 1, pp. 3–7, 2002. View at Google Scholar · View at Scopus
  146. D. E. Dolmans, D. Fukumura, and R. K. Jain, “Photodynamic therapy for cancer,” Nature Reviews Cancer, vol. 3, no. 5, pp. 380–387, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  147. T. J. Dougherty, C. J. Gomer, B. W. Henderson et al., “Photodynamic therapy,” Journal of the National Cancer Institute, vol. 90, pp. 889–905, 1998. View at Google Scholar
  148. A. Ferrario, A. M. Fisher, N. Rucker, and C. J. Gomer, “Celecoxib and NS-398 enhance photodynamic therapy by increasing in vitro apoptosis and decreasing in vivo inflammatory and angiogenic factors,” Cancer Research, vol. 65, no. 20, pp. 9473–9478, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  149. A. Ferrario, K. Von Tiehl, S. Wong, M. Luna, and C. J. Gomer, “Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response,” Cancer Research, vol. 62, no. 14, pp. 3956–3961, 2002. View at Google Scholar · View at Scopus
  150. N. Hendrickx, C. Volanti, U. Moens et al., “Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells,” The Journal of Biological Chemistry, vol. 278, no. 52, pp. 52231–52239, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. M. Lasa, K. R. Mahtani, A. Finch, G. Brewer, J. Saklatvala, and A. R. Clark, “Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade,” Molecular and Cellular Biology, vol. 20, no. 12, pp. 4265–4274, 2000. View at Publisher · View at Google Scholar · View at Scopus
  152. M. Makowski, T. Grzela, J. Niderla et al., “Inhibition of cyclooxygenase-2 indirectly potentiates antitumor effects of photodynamic therapy in mice,” Clinical Cancer Research, vol. 9, no. 14, pp. 5417–5422, 2003. View at Google Scholar · View at Scopus
  153. M. Tsujii, S. Kawano, S. Tsuji, H. Sawaoka, M. Hori, and R. N. DuBois, “Cyclooxygenase regulates angiogenesis induced by colon cancer cells,” Cell, vol. 93, no. 5, pp. 705–716, 1998. View at Publisher · View at Google Scholar · View at Scopus
  154. K. Bhui, S. Prasad, J. George, and Y. Shukla, “Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway,” Cancer Letters, vol. 282, no. 2, pp. 167–176, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  155. N. Kalra, K. Bhui, P. Roy et al., “Regulation of p53, nuclear factor κB and cyclooxygenase-2 expression by bromelain through targeting mitogen-activated protein kinase pathway in mouse skin,” Toxicology and Applied Pharmacology, vol. 226, no. 1, pp. 30–37, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  156. M. Singh and N. Singh, “Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells,” Molecular and Cellular Biochemistry, vol. 325, no. 1-2, pp. 107–119, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  157. Y. E. Marín, B. A. Wall, S. Wang et al., “Curcumin downregulates the constitutive activity of NF-κB and induces apoptosis in novel mouse melanoma cells,” Melanoma Research, vol. 17, no. 5, pp. 274–283, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  158. C. Park, D. O. Moon, I. W. Choi et al., “Curcumin induces apoptosis and inhibits prostaglandin E2 production in synovial fibroblasts of patients with rheumatoid arthritis,” International Journal of Molecular Medicine, vol. 20, no. 3, pp. 365–372, 2007. View at Google Scholar · View at Scopus
  159. W. M. Weber, L. A. Hunsaker, A. M. Gonzales et al., “TPA-induced up-regulation of activator protein-1 can be inhibited or enhanced by analogs of the natural product curcumin,” Biochemical Pharmacology, vol. 72, no. 8, pp. 928–940, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  160. A. Goel, A. K. Prasad, V. S. Parmar, B. Ghosh, and N. Saini, “Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: role of NF-κB, Akt, ROS and MAP kinase pathway,” Chemico-Biological Interactions, vol. 179, no. 2-3, pp. 363–374, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  161. Y. Suh, F. Afaq, J. J. Johnson, and H. Mukhtar, “A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-κB-signaling pathways,” Carcinogenesis, vol. 30, no. 2, pp. 300–307, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  162. D. O. Moon, M. O. Kim, S. H. Kang, Y. H. Choi, and G. Y. Kim, “Sulforaphane suppresses TNF-α-mediated activation of NF-κB and induces apoptosis through activation of reactive oxygen species-dependent caspase-3,” Cancer Letters, vol. 274, no. 1, pp. 132–142, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  163. S. Y. Nam, J. S. Kim, J. M. Kim et al., “DA-6034, a derivative of flavonoid, prevents and ameliorates dextran sulfate sodium-induced colitis and inhibits colon carcinogenesis,” Experimental Biology and Medicine, vol. 233, no. 2, pp. 180–191, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. C. E. Harper, B. B. Patel, J. Wang, I. A. Eltoum, and C. A. Lamartiniere, “Epigallocatechin-3-gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: mechanisms of action,” Prostate, vol. 67, no. 14, pp. 1576–1589, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  165. V. M. Adhami, A. Malik, N. Zaman et al., “Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo,” Clinical Cancer Research, vol. 13, no. 5, pp. 1611–1619, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  166. M. K. Pandey, S. K. Sandur, B. Sung, G. Sethi, A. B. Kunnumakkara, and B. B. Aggarwal, “Butein, a tetrahydroxychalcone, inhibits nuclear factor (NF)-κB and NF-κB-regulated gene expression through direct inhibition of IκBα kinase β on cysteine 179 residue,” The Journal of Biological Chemistry, vol. 282, no. 24, pp. 17340–17350, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. K. Hostanska, G. Jurgenliemk, G. Abel, A. Nahrstedt, and R. Saller, “Willow bark extract (BNO1455) and its fractions suppress growth and induce apoptosis in human colon and lung cancer cells,” Cancer Detection and Prevention, vol. 31, no. 2, pp. 129–139, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. J. Liang and J. M. Slingerland, “Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression,” Cell Cycle, vol. 2, no. 4, pp. 339–345, 2003. View at Google Scholar · View at Scopus
  169. L. Rössig, A. S. Jadidi, C. Urbich, C. Badorff, A. M. Zeiher, and S. Dimmeler, “Akt-dependent phosphorylation of p21Cip1 regulates PCNA binding and proliferation of endothelial cells,” Molecular and Cellular Biology, vol. 21, no. 16, pp. 5644–5657, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  170. G. Totzke, K. Schulze-Osthoff, and R. U. Jänicke, “Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition,” Oncogene, vol. 22, no. 39, pp. 8021–8030, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. E. P. Ryan, T. P. Bushnell, A. E. Friedman, I. Rahman, and R. P. Phipps, “Cyclooxygenase-2 independent effects of cyclooxygenase-2 inhibitors on oxidative stress and intracellular glutathione content in normal and malignant human B-cells,” Cancer Immunology, Immunotherapy, vol. 57, no. 3, pp. 347–358, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  172. R. Mutter, B. Lu, D. P. Carbone et al., “A Phase II study of celecoxib in combination with paclitaxel, carboplatin, and radiotherapy for patients with inoperable stage IIIA/B non-small cell lung cancer,” Clinical Cancer Research, vol. 15, no. 6, pp. 2158–2165, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus