Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2011 (2011), Article ID 793034, 14 pages
http://dx.doi.org/10.1155/2011/793034
Research Article

Transplantable Subcutaneous Hepatoma 22a Affects Functional Activity of Resident Tissue Macrophages in Periphery

Institute for Experimental Medicine, Acad. Pavlov Stree 12, Street Petersburg 197376, Russia

Received 14 January 2011; Revised 24 March 2011; Accepted 14 April 2011

Academic Editor: Richard Gomer

Copyright © 2011 Ekaterina P. Kisseleva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Parish, “Cancer immunotherapy: the past, the present and the future,” Immunology and Cell Biology, vol. 81, no. 2, pp. 106–113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. S. K. Biswas, A. Sica, and C. E. Lewis, “Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms,” Journal of Immunology, vol. 180, no. 4, pp. 2011–2017, 2008. View at Google Scholar · View at Scopus
  3. G. Solinas, G. Germano, A. Mantovani, and P. Allavena, “Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation,” Journal of Leukocyte Biology, vol. 86, no. 5, pp. 1065–1073, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. C. S. Tsai, F. H. Chen, C. C. Wang et al., “Macrophages from irradiated tumors express higher levels of iNOS, arginase-I and COX-2, and promote tumor growth,” International Journal of Radiation Oncology Biology Physics, vol. 68, no. 2, pp. 499–507, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Sugai, K. Kono, A. Takahashi et al., “Characteristic alteration of monocytes with increased intracellular IL-10 and IL-12 in patients with advanced-stage gastric cancer,” Journal of Surgical Research, vol. 116, no. 2, pp. 277–287, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Torroella-Kouri, R. Silvera, D. Rodriguez et al., “Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated,” Cancer Research, vol. 69, no. 11, pp. 4800–4809, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. D. J. Campbell and M. A. Koch, “Phenotypical and functional specialization of FOXP3+ regulatory T cells,” Nature Reviews Immunology, vol. 11, no. 2, pp. 119–130, 2011. View at Publisher · View at Google Scholar
  8. T. Hagemann, J. Wilson, F. Burke et al., “Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype,” Journal of Immunology, vol. 176, no. 8, pp. 5023–5032, 2006. View at Google Scholar · View at Scopus
  9. H. Lee, S. Baek, S.-J. Joe, and S.-N. Pyo, “Modulation of IFN-γ production by TNF-α in macrophages from the tumor environment: significance as an angiogenic switch,” International Immunopharmacology, vol. 6, no. 1, pp. 71–78, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. A. A. Manfredi, A. Capobianco, M. E. Bianchi, and P. Rovere-Querini, “Regulation of dendritic- and T-cell fate by injury-associated endogenous signals,” Critical Reviews in Immunology, vol. 29, no. 1, pp. 69–86, 2009. View at Google Scholar · View at Scopus
  11. K. R. Jain, “Determinants of tumor blood flow: a review,” Cancer Research, vol. 48, no. 10, pp. 2641–2658, 1988. View at Google Scholar · View at Scopus
  12. K. Hung, R. Hayashi, A. Lafond-Walker, C. Lowenstein, D. Pardoll, and H. Levitsky, “The central role of CD4(+) T cells in the antitumor immune response,” Journal of Experimental Medicine, vol. 188, no. 12, pp. 2357–2368, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. D. D. Roberts, J. S. Isenberg, L. A. Ridnour, and D. A. Wink, “Nitric oxide and its gatekeeper thrombospondin-1 in tumor angiogenesis,” Clinical Cancer Research, vol. 13, no. 3, pp. 795–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. V. I. Gelstein, “The growth of murine transplantable hepatomas,” Tsitologiya, vol. 23, no. 1, pp. 3–14, 1971. View at Google Scholar
  15. Y. T. Alexanyan, M. E. Basmadjan, K. S. Movsesyan, L. A. Manuhyan, and S. K. Gevorkyan, “A cell line obtained from transplantable murine hepatoma,” Byulleten Eksperimental'noi Biologii i Meditsiny, no. 5, pp. 94–95, 1972. View at Google Scholar
  16. J. H. Check, T. C. Childs, L. W. Brady, A. R. Derasse, and K. E. Fuscaldo, “Protection against spontaneous mouse mammary adenocarcinoma by inoculation of heat-treated syngeneic mammary tumor cells,” International Journal of Cancer, vol. 7, no. 3, pp. 403–408, 1971. View at Google Scholar · View at Scopus
  17. P. Migliorini, G. Corradin, and S. B. Corradin, “Macrophage NO2 production as a sensitive and rapid assay for the quantitation of murine IFN-γ,” Journal of Immunological Methods, vol. 139, no. 1, pp. 107–114, 1991. View at Publisher · View at Google Scholar · View at Scopus
  18. G. A. W. Rook, J. Steele, S. Umar, and H. M. Dockrell, “A simple method for the solubilisation of reduced NBT, and its use as a colorimetric assay for activation of human macrophages by gamma-interferon,” Journal of Immunological Methods, vol. 82, no. 1, pp. 161–167, 1985. View at Google Scholar · View at Scopus
  19. B. Plytycz, M. Rozanowska, and R. Seljelid, “Quantification of neutral red pinocytosis by small numbers of adherent cells: comparative studies,” Folia Biologica, vol. 40, no. 1-2, pp. 3–9, 1992. View at Google Scholar · View at Scopus
  20. E. P. Kisseleva and N. V. Vasilyeva, “Photometric assay for determination of 5nucleotidase activity in mouse macrophages,” Laboratornye Zhyvotnye, vol. 6, no. 2, pp. 73–84, 1996. View at Google Scholar
  21. E. R. Weibel, G. S. Kistler, and W. F. Scherle, “Practical stereological methods for morphometric cytology,” Journal of Cell Biology, vol. 30, no. 1, pp. 23–38, 1966. View at Google Scholar · View at Scopus
  22. B. Geetha and A. Sodhi, “Effect of cisplatin and other biological response modifiers on the activity of lysozyme, plasminogen activator and 5 nucleotidase by murine macrophages in vitro,” Biochemistry International, vol. 22, no. 6, pp. 1103–1114, 1990. View at Google Scholar · View at Scopus
  23. V. Umansky, P. Beckhove, M. Rocha, A. Kruger, P. R. Crocker, and V. Schirrmacher, “A role for sialoadhesin-positive tissue macrophages in host resistance to lymphoma metastasis in vivo,” Immunology, vol. 87, no. 2, pp. 303–309, 1996. View at Google Scholar · View at Scopus
  24. Y. Zhou, J. N. Murthy, D. Zeng, L. Belardinelli, and M. R. Blackburn, “Alterations in adenosine metabolism and signaling in patients with chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis,” PLoS One, vol. 5, no. 2, Article ID e9224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. O. I. Stepanova, A. V. Krylov, V. I. Lioudyno, and E. P. Kisseleva, “Gene expression for VEGF-A, VEGF-C, and their receptors in murine lymphocytes and macrophages,” Biochemistry, vol. 72, no. 11, pp. 1194–1198, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Y. Chen and G. Nunez, “Sterile inflammation: sensing and reacting to damage,” Nature Reviews Immunology, vol. 10, no. 12, pp. 826–837, 2010. View at Publisher · View at Google Scholar
  27. L. Revesz, “Genetic studies of the relationship of tumour-host cells: effect of tumour cells killed by x-rays upon the growth of admixed viable cells,” Nature, vol. 178, no. 4547, pp. 1391–1392, 1956. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Campana, L. Bosurgi, and P. Rovere-Querini, “HMGB1: a two-headed signal regulating tumor progression and immunity,” Current Opinion in Immunology, vol. 20, no. 5, pp. 518–523, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Tesniere, T. Panaretakis, O. Kepp et al., “Molecular characteristics of immunogenic cancer cell death,” Cell Death and Differentiation, vol. 15, no. 1, pp. 3–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. J. Folkman, “The role of angiogenesis in tumor growth,” Seminars in Cancer Biology, vol. 3, no. 2, pp. 65–71, 1992. View at Google Scholar · View at Scopus
  31. M. Y. Lee and C. Rosse, “Depletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinoma,” Cancer Research, vol. 42, no. 4, pp. 1255–1260, 1982. View at Google Scholar · View at Scopus
  32. D. Gabrilovich, T. Ishida, T. Oyama et al., “Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo,” Blood, vol. 92, no. 11, pp. 4150–4166, 1998. View at Google Scholar · View at Scopus
  33. J. E. Ohm, D. I. Gabrilovich, G. D. Sempowski et al., “VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression,” Blood, vol. 101, no. 12, pp. 4878–4886, 2003. View at Google Scholar · View at Scopus
  34. V. Y. Umanskii, L. M. Kashkina, and M. O. Prilutskaia, “Activity of adenosine metabolism enzymes and spontaneous chemiluminescence in macrophages in the tumor growth process,” Ukrainskii Biokhimicheskii Zhurnal, vol. 61, no. 2, pp. 109–111, 1989. View at Google Scholar · View at Scopus
  35. J. Lazdins and M. L. Karnovsky, “Effect of phosphate esters, nucleotides and nucleosides on 5-nucleotidase of cultured mouse macrophages,” Journal of Cellular Physiology, vol. 96, no. 1, pp. 115–121, 1978. View at Google Scholar · View at Scopus
  36. S. Gordon, “Alternative activation of macrophages,” Nature Reviews Immunology, vol. 3, no. 1, pp. 23–35, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Salmi and S. Jalkanen, “Cell-surface enzymes in control of leukocyte trafficking,” Nature Reviews Immunology, vol. 5, no. 10, pp. 760–771, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. G. G. Yegutkin, “Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade,” Biochimica et Biophysica Acta, vol. 1783, no. 5, pp. 673–694, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. S. Hiratsuka, O. Minowa, J. Kuno, T. Noda, and M. Shibuya, “Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9349–9354, 1998. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. F. Yang, R. T. Poon, Y. Luo et al., “Up-regulation of vascular endothelial growth factor (VEGF) in small-for-size liver grafts enhances macrophage activities through VEGF receptor 2-dependent pathway,” Journal of Immunology, vol. 173, no. 4, pp. 2507–2515, 2004. View at Google Scholar · View at Scopus
  41. A. Bottcher, U. S. Gaipl, B. G. Furnrohr et al., “Involvement of phospatidylserine, alphavbeta3, CD14, CD36, and complement C1q in the phagocytosis of primary necrotic lymphocytes by macrophages,” Arthritis and Rheumatism, vol. 54, no. 3, pp. 927–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. S. P. Dineen, K. D. Lynn, S. E. Holloway et al., “Vascular endothelial growth factor receptor 2 mediates macrophage infiltration into orthotopic pancreatic tumors in mice,” Cancer Research, vol. 68, no. 11, pp. 4340–4346, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. F. Marteau, N. S. Gonzalez, D. Communi, M. Goldman, J.-M. Boeynaems, and D. Communi, “Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells,” Immunobiology, vol. 106, no. 12, pp. 3860–3866, 2008. View at Google Scholar
  44. D. G. Alleva, C. J. Burger, and K. D. Elgert, “Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-α production: role of tumor-derived IL-10, TGF-β, and prostaglandin E2,” Journal of Immunology, vol. 153, no. 4, pp. 1674–1686, 1994. View at Google Scholar · View at Scopus
  45. S. Bhaumik and A. Khar, “Induction of nitric oxide production by the peritoneal macrophages after intraperitoneal or subcutaneous transplantation of AK-5 tumor,” Nitric Oxide, vol. 2, no. 6, pp. 467–474, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. M. R. DiNapoli, C. L. Calderon, and D. M. Lopez, “The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduced expression of the inducible nitric oxide synthase gene,” Journal of Experimental Medicine, vol. 183, no. 4, pp. 1323–1329, 1996. View at Google Scholar · View at Scopus
  47. B. Barleon, S. Sozzani, D. Zhou, H. A. Weich, A. Mantovani, and D. Marme, “Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1,” Blood, vol. 87, no. 8, pp. 3336–3343, 1996. View at Google Scholar · View at Scopus
  48. J. M. Wang, S. Walter, and A. Mantovani, “Re-evaluation of the chemotactic activity of tumour necrosis factor for monocytes,” Immunology, vol. 71, no. 3, pp. 364–367, 1990. View at Google Scholar · View at Scopus
  49. T. Cohen, D. Nahari, L. W. Cerem, G. Neufeld, and B.-Z. Levi, “Interleukin 6 induces the expression of vascular endothelial growth factor,” The Journal of Biological Chemistry, vol. 271, no. 2, pp. 736–741, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Maeda, A. Malykhin, B. N. Teague-Weber, X. H. Sun, A. D. Farris, and K. M. Coggeshall, “Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals,” Blood, vol. 113, no. 19, pp. 4534–4540, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. M. Hashizume, Y. Higuchi, Y. Uchiyama, and M. Mihara, “IL-6 plays an essential role in neutrophilia under inflammation,” Cytokine, vol. 54, no. 1, pp. 92–99, 2011. View at Publisher · View at Google Scholar
  52. L.-X. Qin and Z.-Y. Tang, “The prognostic molecular markers in hepatocellular carcinoma,” World Journal of Gastroenterology, vol. 8, no. 3, pp. 385–392, 2002. View at Google Scholar · View at Scopus
  53. D.-M. Kuang, Y. Wu, N. Chen, J. Cheng, S.-M. Zhuang, and L. Zheng, “Tumor-derived hyaluronan induces formation of immunosuppressive macrophages through transient early activation of monocytes,” Blood, vol. 110, no. 2, pp. 587–595, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Ohashi, V. Burkart, S. Flohe, and H. Kolb, “Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex,” Journal of Immunology, vol. 164, no. 2, pp. 558–561, 2000. View at Google Scholar · View at Scopus
  55. S. M. Hashemi, Z. M. Hassan, S. Soudi, and S. Shahabi, “The effect of vaccination with the lysate of heat-shocked tumor cells on nitric oxide production in BALB/c mice with fibrosarcoma tumor,” Cell Biology International, vol. 32, no. 7, pp. 835–840, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. C. M. McKee, C. J. Lowenstein, M. R. Horton et al., “Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor ?B-dependent mechanism,” Journal of Biological Chemistry, vol. 272, no. 12, pp. 8013–8018, 1997. View at Publisher · View at Google Scholar · View at Scopus
  57. B. Mytar, M. Siedlar, M. Woloszyn, V. Colizzi, and M. Zembala, “Cross-talk between human monocytes and cancer cells during reactive oxygen intermediates generation: the essential role of hyaluronan,” International Journal of Cancer, vol. 94, no. 5, pp. 727–732, 2001. View at Publisher · View at Google Scholar · View at Scopus
  58. J. O. Cantor and P. P. Nadkarni, “Hyaluronan: the Jekyll and Hyde molecule,” Inflammation and Allergy—Drug Targets, vol. 5, no. 4, pp. 257–260, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Schmid-Antomarchi, A. Schmid-Alliana, G. Romey et al., “Extracellular ATP and UTP control the generation of reactive oxygen intermediates in human macrophages through the opening of a charybdotoxin-sensitive Ca2+-dependent K+ channel,” Journal of Immunology, vol. 159, no. 12, pp. 6209–6215, 1997. View at Google Scholar · View at Scopus
  60. Z. A. Cohn and E. Parks, “The regulation of pinocytosis in mouse macrophages III. The induction of vesicle formation by nucleosides and nucleotides,” Journal of Experimental Medicine, vol. 125, no. 3, pp. 457–466, 1967. View at Google Scholar · View at Scopus
  61. G. Hasko, P. Pacher, E. A. Deitch, and E. S. Vizi, “Shaping of monocyte and macrophage function by adenosine receptors,” Pharmacology and Therapeutics, vol. 113, no. 2, pp. 264–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. G. L. Tritsch and P. W. Niswander, “Purine catabolism as a source of superoxide in macrophages,” Annals of the New York Academy of Sciences, vol. 451, pp. 279–290, 1985. View at Google Scholar · View at Scopus