Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2012, Article ID 736524, 11 pages
http://dx.doi.org/10.1155/2012/736524
Research Article

Cytoskeletal Interactions at the Nuclear Envelope Mediated by Nesprins

1Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
2Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
3Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 52, 50931 Cologne, Germany
4International Graduate School in Genetics and Functional Genomics, University of Cologne, 50931 Cologne, Germany
5Department of Biological Sciences, School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK

Received 10 August 2011; Revised 13 October 2011; Accepted 18 October 2011

Academic Editor: Roland Foisner

Copyright © 2012 Surayya Taranum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. A. Mellad, D. T. Warren, and C. M. Shanahan, “Nesprins LINC the nucleus and cytoskeleton,” Current Opinion in Cell Biology, vol. 23, no. 1, pp. 47–54, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. F. Miki, A. Kurabayashi, Y. Tange, K. Okazaki, M. Shimanuki, and O. Niwa, “Two-hybrid search for proteins that interact with Sad1 and Kms1, two membrane-bound components of the spindle pole body in fission yeast,” Molecular Genetics and Genomics, vol. 270, no. 6, pp. 449–461, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. J. Malone, L. Misner, N. Le Bot et al., “The C. elegans hook protein, ZYG-12, mediates the essential attachment between the centrosome and nucleus,” Cell, vol. 115, no. 7, pp. 825–836, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Rivero, A. Kuspa, R. Brokamp, M. Matzner, and A. A. Noegel, “Interaptin, an actin-binding protein of the α-actinin superfamily in Dictyostelium discoideum, is developmentally and cAMP-regulated and associates with intracellular membrane compartments,” Journal of Cell Biology, vol. 142, no. 3, pp. 735–750, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. J. A. Fischer-Vize and K. L. Mosley, “marbles mutants: uncoupling cell determination and nuclear migration in the developing Drosophila eye,” Development, vol. 120, no. 9, pp. 2609–2618, 1994. View at Google Scholar · View at Scopus
  6. Y. Rosenberg-Hasson, M. Renert-Pasca, and T. Volk, “A Drosophila dystrophin-related protein, MSP-300, is required for embryonic muscle morphogenesis,” Mechanisms of Development, vol. 60, no. 1, pp. 83–94, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. D. A. Starr, G. J. Hermann, C. J. Malone et al., “unc-83 encodes a novel component of the nuclear envelope and is essential for proper nuclear migration,” Development, vol. 128, no. 24, pp. 5039–5050, 2001. View at Google Scholar · View at Scopus
  8. D. A. Starr and M. Han, “Role of ANC-1 in tethering nuclei to the actin cytoskeleton,” Science, vol. 298, no. 5592, pp. 406–409, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. Q. Zhang, J. N. Skepper, F. Yang et al., “Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues,” Journal of Cell Science, vol. 114, no. 24, pp. 4485–4498, 2001. View at Google Scholar · View at Scopus
  10. E. D. Apel, R. M. Lewis, R. M. Grady, and J. R. Sanes, “Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction,” Journal of Biological Chemistry, vol. 275, no. 41, pp. 31986–31995, 2000. View at Google Scholar · View at Scopus
  11. V. C. Padmakumar, S. Abraham, S. Braune et al., “Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton,” Experimental Cell Research, vol. 295, no. 2, pp. 330–339, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Y. Zhen, T. Libotte, M. Munck, A. A. Noegel, and E. Korenbaum, “NUANCE, a giant protein connecting the nucleus and actin cytoskeleton,” Journal of Cell Science, vol. 115, no. 15, pp. 3207–3222, 2002. View at Google Scholar · View at Scopus
  13. M. Ketema, K. Wilhelmsen, I. Kuikman, H. Janssen, D. Hodzic, and A. Sonnenberg, “Requirements for the localization of nesprin-3 at the nuclear envelope and its interaction with plectin,” Journal of Cell Science, vol. 120, no. 19, pp. 3384–3394, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Wilhelmsen, S. H. M. Litjens, I. Kuikman et al., “Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin,” Journal of Cell Biology, vol. 171, no. 5, pp. 799–810, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. K. J. Roux, M. L. Crisp, Q. Liu et al., “Nesprin 4 is an outer nuclear membrane protein that can induce kinesin-mediated cell polarization,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2194–2199, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Haque, D. J. Lloyd, D. T. Smallwood et al., “SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton,” Molecular and Cellular Biology, vol. 26, no. 10, pp. 3738–3751, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. V. C. Padmakumar, T. Libotte, W. Lu et al., “The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope,” Journal of Cell Science, vol. 118, no. 15, pp. 3419–3430, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Starr and H. N. Fridolfsson, “Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges,” Annual Review of Cell and Developmental Biology, vol. 26, pp. 421–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. H. R. Dawe, M. Adams, G. Wheway et al., “Nesprin-2 interacts with meckelin and mediates ciliogenesis via remodelling of the actin cytoskeleton,” Journal of Cell Science, vol. 122, no. 15, pp. 2716–2726, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. J. M. Bupp, A. E. Martin, E. S. Stensrud, and S. L. Jaspersen, “Telomere anchoring at the nuclear periphery requires the budding yeast Sad1-UNC-84 domain protein Mps3,” Journal of Cell Biology, vol. 179, no. 5, pp. 845–854, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. S. L. Jaspersen, A. E. Martin, G. Glazko et al., “The Sad1-UNC-84 homology domain in Mps3 interacts with Mps2 to connect the spindle pole body with the nuclear envelope,” Journal of Cell Biology, vol. 174, no. 5, pp. 665–675, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Lu, J. Gotzmann, L. Sironi et al., “Sun1 forms immobile macromolecular assemblies at the nuclear envelope,” Biochimica et Biophysica Acta, vol. 1783, no. 12, pp. 2415–2426, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Marmé, H. P. Zimmermann, G. Moldenhauer et al., “Loss of Drop1 expression already at early tumor stages in a wide range of human carcinomas,” International Journal of Cancer, vol. 123, no. 9, pp. 2048–2056, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Kobayashi, Y. Katanosaka, Y. Iwata, M. Matsuoka, M. Shigekawa, and S. Wakabayashi, “Identification and characterization of GSRP-56, a novel Golgi-localized spectrin repeat-containing protein,” Experimental Cell Research, vol. 312, no. 16, pp. 3152–3164, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Nedivi, S. Fieldust, L. E. Theill, and D. Hevroni, “A set of genes expressed in response to light in the adult cerebral cortex and regulated during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 5, pp. 2048–2053, 1996. View at Publisher · View at Google Scholar · View at Scopus
  26. J. M. K. Mislow, J. M. Holaska, M. S. Kim et al., “Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro,” FEBS Letters, vol. 525, no. 1–3, pp. 135–140, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. G. Simpson and R. G. Roberts, “Patterns of evolutionary conservation in the nesprin genes highlight probable functionally important protein domains and isoforms,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1359–1367, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Noegel, W. Witke, and M. Schleicher, “Calcium-sensitive non-muscle α-actinin contains EF-hand structures and highly conserved regions,” FEBS Letters, vol. 221, no. 2, pp. 391–396, 1987. View at Google Scholar · View at Scopus
  29. K. Djinovic-Carugo, M. Gautel, J. Ylänne, and P. Young, “The spectrin repeat: a structural platform for cytoskeletal protein assemblies,” FEBS Letters, vol. 513, no. 1, pp. 119–123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Libotte, H. Zaim, S. Abraham et al., “Lamin A/C-dependent localization of Nesprin-2, a giant scaffolder at the nuclear envelope,” Molecular Biology of the Cell, vol. 16, no. 7, pp. 3411–3424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Neumann, M. Schneider, R. L. Daugherty et al., “Nesprin-2 interacts with α-catenin and regulates Wnt signaling at the nuclear envelope,” Journal of Biological Chemistry, vol. 285, no. 45, pp. 34932–34938, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Zhong, S. A. Chang, A. Kalinowski, K. L. Wilson, and K. N. Dahl, “Stabilization of the spectrin-like domains of nesprin-1α by the evolutionarily conserved "adaptive" domain,” Cellular and Molecular Bioengineering, vol. 3, no. 2, pp. 139–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. “Ordering the membrane cytoskeleton trilayer,” in Current Topics in Membranes, M. S. Mooseker and J. S. Morrow, Eds., vol. 38, Academic Press, 1991.
  34. A. A. Noegel, R. Blau-Wasser, H. Sultana et al., “The cyclase-associated protein CAP as regulator of cell polarity and cAMP signaling in dictyostelium,” Molecular Biology of the Cell, vol. 15, no. 2, pp. 934–945, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Tabor and C. C. Richardson, “A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 4, pp. 1074–1078, 1985. View at Google Scholar · View at Scopus
  36. M. Schleicher, G. Gerisch, and G. Isenberg, “New actin-binding proteins from Dictyostelium discoideum,” EMBO Journal, vol. 3, no. 9, pp. 2095–2100, 1984. View at Google Scholar
  37. C. Dreuillet, J. Tillit, M. Kress, and M. Ernoult-Lange, “In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C,” Nucleic Acids Research, vol. 30, no. 21, pp. 4634–4642, 2002. View at Google Scholar · View at Scopus
  38. M. Stoeckelhuber, A. A. Noegel, C. Eckerskorn, J. Köhler, D. Rieger, and M. Schleicher, “Structure/function studies on the pH-dependent actin-binding protein hisactophilin in Dictyostelium mutants,” Journal of Cell Science, vol. 109, no. 7, pp. 1825–1835, 1996. View at Google Scholar · View at Scopus
  39. M. Haugwitz, A. A. Noegel, D. Rieger, F. Lottspeich, and M. Schleicher, “Dictyostelium discoideum contains two profilin isoforms that differ in structure and function,” Journal of Cell Science, vol. 100, no. 3, pp. 481–489, 1991. View at Google Scholar · View at Scopus
  40. K. N. Randles, L. T. Lam, C. A. Sewry et al., “Nesprins, but not sun proteins, switch isoforms at the nuclear envelope during muscle development,” Developmental Dynamics, vol. 239, no. 3, pp. 998–1009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. L. Fontao, D. Geerts, I. Kulkman, J. Koster, D. Kramer, and A. Sonnenberg, “The interaction of plectin with actin: evidence for cross-linking of actin filaments by dimerization of the actin-binding domain of plectin,” Journal of Cell Science, vol. 114, no. 11, pp. 2065–2076, 2001. View at Google Scholar · View at Scopus
  42. I. N. Rybakova, J. L. Humston, K. J. Sonnemann, and J. M. Ervasti, “Dystrophin and utrophin bind actin through distinct modes of contact,” Journal of Biological Chemistry, vol. 281, no. 15, pp. 9996–10001, 2006. View at Publisher · View at Google Scholar · View at Scopus
  43. B. Legrand, E. Giudice, A. Nicolas, O. Delalande, and E. Le Rumeur, “Computational study of the human dystrophin repeats: interaction properties and molecular dynamics,” PLoS ONE, vol. 6, no. 8, Article ID e23819, 2011. View at Publisher · View at Google Scholar
  44. S. B. Khatau, C. M. Hale, P. J. Stewart-Hutchinson et al., “A perinuclear actin cap regulates nuclear shape,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 45, pp. 19017–19022, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. R. Postel, M. Ketema, I. Kuikman, J. M. De Pereda, and A. Sonnenberg, “Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish,” Journal of Cell Science, vol. 124, no. 5, pp. 755–764, 2011. View at Publisher · View at Google Scholar
  46. Y. Lüke, H. Zaim, I. Karakesisoglou et al., “Nesprin-2 Giant (NUANCE) maintains nuclear envelope architecture and composition in skin,” Journal of Cell Science, vol. 121, no. 11, pp. 1887–1898, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. Q. Zhang, C. Bethmann, N. F. Worth et al., “Nesprin-1 and -2 are involved in the pathogenesis of Emery—dreifuss muscular dystrophy and are critical for nuclear envelope integrity,” Human Molecular Genetics, vol. 16, no. 23, pp. 2816–2833, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Chakrabarti, D. A. Kelkar, and A. Chattopadhyay, “Spectrin organization and dynamics: new insights,” Bioscience Reports, vol. 26, no. 6, pp. 369–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. Q. Liu, N. Pante, T. Misteli et al., “Functional association of Sun1 with nuclear pore complexes,” Journal of Cell Biology, vol. 178, no. 5, pp. 785–798, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. A. L. Olins, T. V. Hoang, M. Zwerger et al., “The LINC-less granulocyte nucleus,” European Journal of Cell Biology, vol. 88, no. 4, pp. 203–214, 2009. View at Publisher · View at Google Scholar · View at Scopus