Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 568931, 9 pages
http://dx.doi.org/10.1155/2013/568931
Review Article

Regulation of the Ras-MAPK and PI3K-mTOR Signalling Pathways by Alternative Splicing in Cancer

1Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School Ein Kerem, 91120 Jerusalem, Israel
2Institute of Molecular Genetics, National Research Council (IGM-CNR), Via Abbiategrasso 207, 27100 Pavia, Italy

Received 20 June 2013; Accepted 26 July 2013

Academic Editor: Claudio Sette

Copyright © 2013 Zahava Siegfried et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Bonnal, L. Vigevani, and J. Valcarcel, “The spliceosome as a target of novel antitumour drugs,” Nature Reviews Drug Discovery, vol. 11, no. 11, pp. 847–859, 2012. View at Google Scholar
  2. C. C. Warzecha and R. P. Carstens, “Complex changes in alternative pre-mRNA splicing play a central role in the epithelial-to-mesenchymal transition (EMT),” Seminars in Cancer Biology, vol. 22, no. 5-6, pp. 417–427, 2012. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Kim, A. Goren, and G. Ast, “Insights into the connection between cancer and alternative splicing,” Trends in Genetics, vol. 24, no. 1, pp. 7–10, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. R. K. Singh and T. A. Cooper, “Pre-mRNA splicing in disease and therapeutics,” Trends in Molecular Medicine, vol. 18, no. 8, pp. 472–482, 2012. View at Google Scholar
  5. E. Papaemmanuil, M. Cazzola, J. Boultwood et al., “Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts,” New England Journal of Medicine, vol. 365, no. 15, pp. 1384–1395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. W. Harbour, E. D. O. Roberson, H. Anbunathan, M. D. Onken, L. A. Worley, and A. M. Bowcock, “Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma,” Nature Genetics, vol. 45, no. 2, pp. 133–135, 2013. View at Google Scholar
  7. V. Quesada, A. J. Ramsay, and C. Lopez-Otin, “Chronic lymphocytic leukemia with SF3B1 mutation,” New England Journal of Medicine, vol. 366, no. 26, p. 2530, 2012. View at Google Scholar
  8. V. Quesada, L. Conde, N. Villamor et al., “Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia,” Nature Genetics, vol. 44, no. 1, pp. 47–52, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Cohen-Eliav, R. Golan-Gerstl, Z. Siegfried et al., “The splicing factor SRSF6 is amplified and is an oncoprotein in lung and colon cancers,” The Journal of Pathology, vol. 229, no. 4, pp. 630–639, 2013. View at Publisher · View at Google Scholar
  10. J. P. Venables, “Unbalanced alternative splicing and its significance in cancer,” BioEssays, vol. 28, no. 4, pp. 378–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. P. Venables, R. Klinck, C. Koh et al., “Cancer-associated regulation of alternative splicing,” Nature Structural & Molecular Biology, vol. 16, no. 6, pp. 670–676, 2009. View at Publisher · View at Google Scholar
  12. R. Jia, C. Li, J. P. McCoy, C.-X. Deng, and Z.-M. Zheng, “SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance,” International Journal of Biological Sciences, vol. 6, no. 7, pp. 806–826, 2010. View at Google Scholar · View at Scopus
  13. C. V. Lefave, M. Squatrito, S. Vorlova et al., “Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas,” EMBO Journal, vol. 30, no. 19, pp. 4084–4097, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Karni, E. De Stanchina, S. W. Lowe, R. Sinha, D. Mu, and A. R. Krainer, “The gene encoding the splicing factor SF2/ASF is a proto-oncogene,” Nature Structural and Molecular Biology, vol. 14, no. 3, pp. 185–193, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. R. Golan-Gerstl, M. Cohen, A. Shilo et al., “Splicing factor hnRNP A2/B1 regulates tumor suppressor gene splicing and is an oncogenic driver in glioblastoma,” Cancer Research, vol. 71, no. 13, pp. 4464–4472, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. T. L. Yuan and L. C. Cantley, “PI3K pathway alterations in cancer: variations on a theme,” Oncogene, vol. 27, no. 41, pp. 5497–5510, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. J. Shaw and L. C. Cantley, “Ras, PI(3)K and mTOR signalling controls tumour cell growth,” Nature, vol. 441, no. 7092, pp. 424–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Laplante and D. M. Sabatini, “MTOR signaling in growth control and disease,” Cell, vol. 149, no. 2, pp. 274–293, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Druillennec, C. Dorard, and A. Eychene, “Alternative splicing in oncogenic kinases: from physiological functions to cancer,” Journal of Nucleic Acids, vol. 2012, Article ID 639062, 14 pages, 2012. View at Publisher · View at Google Scholar
  20. E. Y. Baitei, M. Zou, F. Al-Mohanna et al., “Aberrant BRAF splicing as an alternative mechanism for oncogenic B-Raf activation in thyroid carcinoma,” Journal of Pathology, vol. 217, no. 5, pp. 707–715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  21. P. I. Poulikakos, Y. Persaud, M. Janakiraman et al., “RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E),” Nature, vol. 480, no. 7377, pp. 387–390, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Heakal, M. Kester, and S. Savage, “Vemurafenib (PLX4032): an orally available inhibitor of mutated BRAF for the treatment of metastatic melanoma,” Annals of Pharmacotherapy, vol. 45, no. 11, pp. 1399–1405, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. C. M. Barnett, “Everolimus: targeted therapy on the horizon for the treatment of breast cancer,” Pharmacotherapy, vol. 32, no. 4, pp. 383–396, 2012. View at Google Scholar
  24. K. B. Kim, R. Kefford, A. C. Pavlick et al., “Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor,” Journal of Clinical Oncology, vol. 31, no. 4, pp. 482–489, 2013. View at Publisher · View at Google Scholar
  25. K. T. Flaherty, J. R. Infante, A. Daud et al., “Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations,” New England Journal of Medicine, vol. 367, no. 18, pp. 1694–1703, 2012. View at Google Scholar
  26. S. P. Patel, A. J. Lazar, N. E. Papadopoulos et al., “Clinical responses to selumetinib (AZD6244; ARRY-142886)-based combination therapy stratified by gene mutations in patients with metastatic melanoma,” Cancer, vol. 119, no. 4, pp. 799–805, 2013. View at Publisher · View at Google Scholar
  27. M. W. Pedersen, V. Tkach, N. Pedersen, V. Berezin, and H. S. Poulsen, “Expression of a naturally occurring constitutively active variant of the epidermal growth factor receptor in mouse fibroblasts increases motility,” International Journal of Cancer, vol. 108, no. 5, pp. 643–653, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Vorlová, G. Rocco, C. V. LeFave et al., “Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation,” Molecular Cell, vol. 43, no. 6, pp. 927–939, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. C. C. Warzecha, T. K. Sato, B. Nabet, J. B. Hogenesch, and R. P. Carstens, “ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing,” Molecular Cell, vol. 33, no. 5, pp. 591–601, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. T. H. Ho, R. S. Savkur, M. G. Poulos, M. A. Mancini, M. S. Swanson, and T. A. Cooper, “Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy,” Journal of Cell Science, vol. 118, no. 13, pp. 2923–2933, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. R. S. Savkur, A. V. Philips, and T. A. Cooper, “Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy,” Nature Genetics, vol. 29, no. 1, pp. 40–47, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Mezquita, J. Mezquita, M. Pau, and C. Mezquita, “A novel intracellular isoform of VEGFR-1 activates Src and promotes cell invasion in MDA-MB-231 breast cancer cells,” Journal of Cellular Biochemistry, vol. 110, no. 3, pp. 732–742, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. C. P. Thomas, N. S. Raikwar, E. A. Kelley, and K. Z. Liu, “Alternate processing of Flt1 transcripts is directed by conserved cis-elements within an intronic region of FLT1 that reciprocally regulates splicing and polyadenylation,” Nucleic Acids Research, vol. 38, no. 15, Article ID gkq198, pp. 5130–5140, 2010. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Ghigna, M. De Toledo, S. Bonomi et al., “Pro-metastatic splicing of Ron proto-oncogene mRNA can be reversed: therapeutic potential of bifunctional oligonucleotides and indole derivatives,” RNA Biology, vol. 7, no. 4, pp. 495–503, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Ghigna, S. Giordano, H. Shen et al., “Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene,” Molecular Cell, vol. 20, no. 6, pp. 881–890, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Zhang, J. S. Greendorfer, J. Jiao, S. C. Kelpke, and J. A. Thompson, “Alternatively spliced FGFR-1 isoforms differentially modulate endothelial cell activation of c-YES,” Archives of Biochemistry and Biophysics, vol. 450, no. 1, pp. 50–62, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Chettouh, L. Fartoux, L. Aoudjehane et al., “Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors,” Cancer Research, vol. 73, no. 13, pp. 3974–3986, 2013. View at Publisher · View at Google Scholar
  38. J.-H. Lee, F. G. Chong, C. L. Chong, D. K. Myung, and G. F. V. Woude, “An alternatively spliced form of Met receptor is tumorigenic,” Experimental and Molecular Medicine, vol. 38, no. 5, pp. 565–573, 2006. View at Google Scholar · View at Scopus
  39. Z. Tiran, A. Oren, C. Hermesh et al., “A novel recombinant soluble splice variant of met is a potent antagonist of the hepatocyte growth factor/scatter factor-met pathway,” Clinical Cancer Research, vol. 14, no. 14, pp. 4612–4621, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Hirschi and F. T. Kolligs, “Alternative splicing of BRAF transcripts and characterization of C-terminally truncated B-Raf isoforms in colorectal cancer,” International Journal of Cancer, vol. 133, no. 3, pp. 590–596, 2013. View at Google Scholar
  41. X. Yang, Z. Guo, F. Sun et al., “Novel membrane-associated androgen receptor splice variant potentiates proliferative and survival responses in prostate cancer cells,” Journal of Biological Chemistry, vol. 286, no. 41, pp. 36152–36160, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. M. Camats, M. Kokolo, K. J. Heesom, M. Ladomery, and M. Bach-Elias, “P19 H-ras induces G1/S phase delay maintaining cells in a reversible quiescence state,” PLoS ONE, vol. 4, no. 12, Article ID e8513, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. C. Brignatz, M. P. Paronetto, S. Opi et al., “Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn,” Molecular and Cellular Biology, vol. 29, no. 24, pp. 6438–6448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Guil, N. De La Iglesia, J. Fernández-Larrea et al., “Alternative splicing of the human proto-oncogene c-H-ras renders a new Ras family protein that trafficks to cytoplasm and nucleus,” Cancer Research, vol. 63, no. 17, pp. 5178–5187, 2003. View at Google Scholar · View at Scopus
  45. T. Yokoyama, K. Takano, A. Yoshida et al., “DA-Raf1, a competent intrinsic dominant-negative antagonist of the Ras-ERK pathway, is required for myogenic differentiation,” Journal of Cell Biology, vol. 177, no. 5, pp. 781–793, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Rauch, K. Moran-Jones, V. Albrecht et al., “c-Myc regulates RNA splicing of the A-Raf kinase and its activation of the ERK pathway,” Cancer Research, vol. 71, no. 13, pp. 4664–4674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. E. K. Rowinsky, “The erbB family: targets for therapeutic development against cancer and therapeutic strategies using monoclonal antibodies and tyrosine kinase inhibitors,” Annual Review of Medicine, vol. 55, pp. 433–457, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. N. Sugawa, A. J. Ekstrand, C. D. James, and V. P. Collins, “Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 21, pp. 8602–8606, 1990. View at Google Scholar · View at Scopus
  49. R. Nishikawa, X.-D. Ji, R. C. Harmon et al., “A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 16, pp. 7727–7731, 1994. View at Publisher · View at Google Scholar · View at Scopus
  50. U. H. Weidle, D. Maisel, S. Klostermann, E. H. Weiss, and M. Schmitt, “Differential splicing generates new transmembrane receptor and extracellular matrix-related targets for antibody-based therapy of cancer,” Cancer Genomics and Proteomics, vol. 8, no. 5, pp. 211–226, 2011. View at Google Scholar · View at Scopus
  51. H. Wang, M. Zhou, B. Shi et al., “Identification of an exon 4-deletion variant of epidermal growth factor receptor with increased metastasis-promoting capacity,” Neoplasia, vol. 13, no. 5, pp. 461–471, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. W. Yang, Y. Xia, Y. Cao et al., “EGFR-induced and PKCepsilon monoubiquitylation-dependent NF-kappaB activation upregulates PKM2 expression and promotes tumorigenesis,” Molecular Cell, vol. 48, no. 5, pp. 771–784, 2012. View at Publisher · View at Google Scholar
  53. C. V. Clower, D. Chatterjee, Z. Wang, L. C. Cantley, M. G. V. Heidena, and A. R. Krainer, “The alternative splicing repressors hnRNP A1/A2 and PTB influence pyruvate kinase isoform expression and cell metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 1894–1899, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. C. J. David, M. Chen, M. Assanah, P. Canoll, and J. L. Manley, “HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer,” Nature, vol. 463, no. 7279, pp. 364–368, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. W. Yang, Y. Zheng, Y. Xia et al., “ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect,” Nature Cell Biology, vol. 14, no. 12, pp. 1295–1304, 2012. View at Google Scholar
  56. J. L. Reiter, D. W. Threadgill, G. D. Eley et al., “Comparative genomic sequence analysis and isolation of human and mouse alternative EGFR transcripts encoding truncated receptor isoforms,” Genomics, vol. 71, no. 1, pp. 1–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. A. T. Baron, J. A. Wilken, D. E. Haggstrom, S. T. Goodrich, and N. J. Maihle, “Clinical implementation of soluble EGFR (sEGFR) as a theragnostic serum biomarker of breast, lung and ovarian cancer,” IDrugs, vol. 12, no. 5, pp. 302–308, 2009. View at Google Scholar · View at Scopus
  58. S. Maramotti, M. Paci, F. Miccichè et al., “Soluble epidermal growth factor receptor isoforms in non-small cell lung cancer tissue and in blood,” Lung Cancer, vol. 76, no. 3, pp. 332–338, 2012. View at Publisher · View at Google Scholar · View at Scopus
  59. C. Halle, M. Lando, D. H. Svendsrud et al., “Membranous expression of ectodomain isoforms of the epidermal growth factor receptor predicts outcome after chemoradiotherapy of lymph node-negative cervical cancer,” Clinical Cancer Research, vol. 17, no. 16, pp. 5501–5512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Philippou, A. Armakolas, and M. Koutsilieris, “Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer,” Frontiers in Endocrinology, vol. 4, article 31, 2013. View at Google Scholar
  61. G. Chen, J. Wang, Z. Liu, and M. Kornmann, “Exon III splicing of fibroblast growth factor receptor 1 is modulated by growth factors and cyclin D1,” Pancreas, vol. 37, no. 2, pp. 159–164, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. G. Condorelli, R. Bueno, and R. J. Smith, “Two alternatively spliced forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics,” Journal of Biological Chemistry, vol. 269, no. 11, pp. 8510–8516, 1994. View at Google Scholar · View at Scopus
  63. C. Marchini, F. Gabrielli, M. Iezzi et al., “The human splice variant δ16HER2 induces rapid tumor onset in a reporter transgenic mouse,” PLoS ONE, vol. 6, no. 4, Article ID e18727, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Veikkolainen, K. Vaparanta, K. Halkilahti, K. Iljin, M. Sundvall, and K. Elenius, “Function of ERBB4 is determined by alternative splicing,” Cell Cycle, vol. 10, no. 16, pp. 2647–2657, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Sundvall, V. Veikkolainen, K. Kurppa et al., “Cell death or survival promoted by alternative isoforms of ErbB4,” Molecular Biology of the Cell, vol. 21, no. 23, pp. 4275–4286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  66. D. M. Aebersold, Y. D. Shaul, Y. Yung et al., “Extracellular Signal-Regulated Kinase 1c (ERK1c), a novel 42-kilodalton ERK, demonstrates unique modes of regulation, localization, and function,” Molecular and Cellular Biology, vol. 24, no. 22, pp. 10000–10015, 2004. View at Publisher · View at Google Scholar · View at Scopus
  67. Y. D. Shaul, G. Gibor, A. Plotnikov, and R. Seger, “Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade,” Genes and Development, vol. 23, no. 15, pp. 1779–1790, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. L. Adesso, S. Calabretta, F. Barbagallo et al., “Gemcitabine triggers a pro-survival response in pancreatic cancer cells through activation of the MNK2/eIF4E pathway,” Oncogene, vol. 32, no. 23, pp. 2848–2857, 2013. View at Publisher · View at Google Scholar
  69. S. Fransson, A. Uv, H. Eriksson et al., “p37delta is a new isoform of PI3K p110delta that increases cell proliferation and is overexpressed in tumors,” Oncogene, vol. 31, no. 27, pp. 3277–3286, 2012. View at Publisher · View at Google Scholar
  70. E. Lefai, M. Roques, N. Vega, M. Laville, and H. Vidal, “Expression of the splice variants of the p85α regulatory subunit of phosphoinositide 3-kinase in muscle and adipose tissue of healthy subjects and type 2 diabetic patients,” Biochemical Journal, vol. 360, no. 1, pp. 117–125, 2001. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Agrawal and C. Eng, “Differential expression of novel naturally occurring splice variants of PTEN and their functional consequences in Cowden syndrome and sporadic breast cancer,” Human Molecular Genetics, vol. 15, no. 5, pp. 777–787, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Hoogeveen-Westerveld, R. Ekong, S. Povey et al., “Functional assessment of TSC2 variants identified in individuals with tuberous sclerosis complex,” Human Mutation, vol. 34, no. 1, pp. 167–175, 2013. View at Publisher · View at Google Scholar
  73. K. Mayer, W. Ballhausen, W. Leistner, and H.-D. Rott, “Three novel types of splicing aberrations in the tuberous sclerosis TSC2 gene caused by mutations apart from splice consensus sequences,” Biochimica et Biophysica Acta, vol. 1502, no. 3, pp. 495–507, 2000. View at Publisher · View at Google Scholar · View at Scopus
  74. L. Xu, C. Sterner, M. M. Maheshwar et al., “Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues,” Genomics, vol. 27, no. 3, pp. 475–480, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. G. Panasyuk, I. Nemazanyy, A. Zhyvoloup et al., “mTORβ splicing isoform promotes cell proliferation and tumorigenesis,” Journal of Biological Chemistry, vol. 284, no. 45, pp. 30807–30814, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. M.-É. Huot, G. Vogel, A. Zabarauskas et al., “The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis,” Molecular Cell, vol. 46, no. 2, pp. 187–199, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. G. Michlewski, J. R. Sanford, and J. F. Cáceres, “The splicing factor SF2/ASF regulates translation initiation by enhancing phosphorylation of 4E-BP1,” Molecular Cell, vol. 30, no. 2, pp. 179–189, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. V. Ben-Hur, P. Denichenko, Z. Siegfried et al., “S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1,” Cell Reports, vol. 3, no. 1, pp. 103–115, 2013. View at Publisher · View at Google Scholar
  79. K. W. Lynch, “Regulation of alternative splicing by signal transduction pathways,” Advances in Experimental Medicine and Biology, vol. 623, pp. 161–174, 2007. View at Google Scholar · View at Scopus
  80. S. Stamm, “Regulation of alternative splicing by reversible protein phosphorylation,” Journal of Biological Chemistry, vol. 283, no. 3, pp. 1223–1227, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. J. A. McCubrey, L. S. Steelman, W. H. Chappell et al., “Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance,” Oncotarget, vol. 3, no. 10, pp. 1068–1111, 2012. View at Google Scholar
  82. E. S. White, R. L. Sagana, A. J. Booth et al., “Control of fibroblast fibronectin expression and alternative splicing via the PI3K/Akt/mTOR pathway,” Experimental Cell Research, vol. 316, no. 16, pp. 2644–2653, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. J. C. Shultz, R. W. Goehe, D. S. Wijesinghe et al., “Alternative splicing of caspase 9 is modulated by the phosphoinositide 3-kinase/Akt pathway via phosphorylation of SRp30a,” Cancer Research, vol. 70, no. 22, pp. 9185–9196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. N. A. Patel, S. Kaneko, H. S. Apostolatos et al., “Molecular and genetic studies imply Akt-mediated signaling promotes protein kinase CβII alternative splicing via phosphorylation of serine/arginine-rich splicing factor SRp40,” Journal of Biological Chemistry, vol. 280, no. 14, pp. 14302–14309, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. A. M. Al-Ayoubi, H. Zheng, Y. Liu, T. Bai, and S. T. Eblen, “Mitogen-activated protein kinase phosphorylation of splicing factor 45 (SPF45) regulates SPF45 alternative splicing site utilization, proliferation, and cell adhesion,” Molecular and Cellular Biology, vol. 32, no. 14, pp. 2880–2893, 2012. View at Publisher · View at Google Scholar
  86. Z. Zhou, J. Qiu, W. Liu et al., “The Akt-SRPK-SR axis constitutes a major pathway in transducing EGF signaling to regulate alternative splicing in the nucleus,” Molecular Cell, vol. 47, no. 3, pp. 422–433, 2012. View at Publisher · View at Google Scholar
  87. E. Allemand, S. Guil, M. Myers, J. Moscat, J. F. Cáceres, and A. R. Krainer, “Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 10, pp. 3605–3610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  88. W. V. D. H. Van Oordt, M. T. Diaz-Meco, J. Lozano, A. R. Krainer, J. Moscat, and J. F. Cáceres, “The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation,” Journal of Cell Biology, vol. 149, no. 2, pp. 307–316, 2000. View at Publisher · View at Google Scholar · View at Scopus
  89. S. Guil, J. C. Long, and J. F. Cáceres, “hnRNP A1 relocalization to the stress granules reflects a role in the stress response,” Molecular and Cellular Biology, vol. 26, no. 15, pp. 5744–5758, 2006. View at Publisher · View at Google Scholar · View at Scopus
  90. R. Karni, Y. Hippo, S. W. Lowe, and A. R. Krainer, “The splicing-factor oncoprotein SF2/ASF activates mTORC1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 40, pp. 15323–15327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. M. Blaustein, F. Pelisch, T. Tanos et al., “Concerted regulation of nuclear and cytoplasmic activities of SR proteins by AKT,” Nature Structural & Molecular Biology, vol. 12, no. 12, pp. 1037–1044, 2005. View at Publisher · View at Google Scholar