Table of Contents Author Guidelines Submit a Manuscript
International Journal of Cell Biology
Volume 2013, Article ID 642853, 12 pages
http://dx.doi.org/10.1155/2013/642853
Review Article

Ewing Sarcoma Protein: A Key Player in Human Cancer

1Department of Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
2Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia IRCSS, 00143 Rome, Italy

Received 1 June 2013; Accepted 26 July 2013

Academic Editor: Michael Ladomery

Copyright © 2013 Maria Paola Paronetto. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Aurias, C. Rimbaut, and D. Buffe, “Translocation involving chromosome 22 in Ewing's sarcoma. A cytogenetic study of four fresh tumors,” Cancer Genetics and Cytogenetics, vol. 12, no. 1, pp. 21–25, 1984. View at Publisher · View at Google Scholar · View at Scopus
  2. O. Delattre, J. Zucman, B. Plougastel et al., “Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours,” Nature, vol. 359, no. 6391, pp. 162–165, 1992. View at Publisher · View at Google Scholar · View at Scopus
  3. J. Zucman, O. Delattre, C. Desmaze et al., “EWS and ATF-1 gene fusion induced by t(12;22) translocation in malignant melanoma of soft parts,” Nature Genetics, vol. 4, no. 4, pp. 341–345, 1993. View at Publisher · View at Google Scholar · View at Scopus
  4. J. Zucman, T. Melot, C. Desmaze et al., “Combinatorial generation of variable fusion proteins in the Ewing family of tumours,” EMBO Journal, vol. 12, no. 12, pp. 4481–4487, 1993. View at Google Scholar · View at Scopus
  5. N. J. Balamuth and R. B. Womer, “Ewing's sarcoma,” The Lancet Oncology, vol. 11, no. 2, pp. 184–192, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Kovar, “Downstream EWS/FLI1—upstream Ewing's sarcoma,” Genome Medicine, vol. 2, no. 1, article 8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Ordóñez, D. Osuna, D. Herrero, E. De Álava, and J. Madoz-Gúrpide, “Advances in Ewing's sarcoma research: where are we now and what lies ahead?” Cancer Research, vol. 69, no. 18, pp. 7140–7150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. S. L. Lessnick and M. Ladanyi, “Molecular pathogenesis of Ewing sarcoma: new therapeutic and transcriptional targets,” Annual Review of Pathology, vol. 7, pp. 145–159, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. I. R. A. Mackenzie, R. Rademakers, and M. Neumann, “TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia,” The Lancet Neurology, vol. 9, no. 10, pp. 995–1007, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Vance, B. Rogelj, T. Hortobágyi et al., “Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6,” Science, vol. 323, no. 5918, pp. 1208–1211, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Morohoshi, Y. Ootsuka, K. Arai et al., “Genomic structure of the human RBP56/hTAF(II)68 and FUS/TLS genes,” Gene, vol. 221, no. 2, pp. 191–198, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. L. Rossow and R. Janknecht, “The Ewing's sarcoma gene product functions as a transcriptional activator,” Cancer Research, vol. 61, no. 6, pp. 2690–2695, 2001. View at Google Scholar · View at Scopus
  13. M. K. Andersson, A. Ståhlberg, Y. Arvidsson et al., “The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response,” BMC Cell Biology, vol. 9, article 37, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. J. S. Felsch, W. S. Lane, and E. G. Peralta, “Tyrosine kinase Pyk2 mediates G-protein-coupled receptor regulation of the Ewing sarcoma RNA-binding protein EWS,” Current Biology, vol. 9, no. 9, pp. 485–488, 1999. View at Publisher · View at Google Scholar · View at Scopus
  15. T. J. Kwiatkowski Jr., D. A. Bosco, A. L. LeClerc et al., “Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis,” Science, vol. 323, no. 5918, pp. 1205–1208, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. D. A. Bosco, N. Lemay, H. K. Ko et al., “Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules,” Human Molecular Genetics, vol. 19, no. 21, pp. 4160–4175, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. B. Plougastel, J. Zucman, M. Peter, G. Thomas, and O. Delattre, “Genomic structure of the EWS gene and its relationship to EWSR1, a site of tumor-associated chromosome translocation,” Genomics, vol. 18, no. 3, pp. 609–615, 1993. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Åman, I. Panagopoulos, C. Lassen et al., “Expression patterns of the human sarcoma-associated genes FUS and EWS and the genomic structure of FUS,” Genomics, vol. 37, no. 1, pp. 1–8, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Crozat, P. Aman, N. Mandahl, and D. Ron, “Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma,” Nature, vol. 363, no. 6430, pp. 640–644, 1993. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Melot, L. Dauphinot, N. Sévenet, F. Radvanyi, and O. Delattre, “Characterization of a new brain-specific isoform of the EWS oncoprotein,” European Journal of Biochemistry, vol. 268, no. 12, pp. 3483–3489, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. T. Ota, Y. Suzuki, T. Nishikawa et al., “Complete sequencing and characterization of 21, 243 full-length human cDNAs,” Nature Genetics, vol. 36, no. 1, pp. 40–45, 2004. View at Publisher · View at Google Scholar
  22. H. Kovar, G. Jug, C. Hattinger et al., “The EWS protein is dispensable for Ewing tumor growth,” Cancer Research, vol. 61, no. 16, pp. 5992–5997, 2001. View at Google Scholar · View at Scopus
  23. H. Li, W. Watford, C. Li et al., “Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development,” Journal of Clinical Investigation, vol. 117, no. 5, pp. 1314–1323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. G. G. Hicks, N. Singh, A. Nashabi et al., “Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death,” Nature Genetics, vol. 24, no. 2, pp. 175–179, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Kuroda, J. Sok, L. Webb et al., “Male sterility and enhanced radiation sensitivity in TLS(-/-) mice,” EMBO Journal, vol. 19, no. 3, pp. 453–462, 2000. View at Google Scholar · View at Scopus
  26. T. R. Mosmann and R. L. Coffman, “TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties,” Annual Review of Immunology, vol. 7, pp. 145–173, 1989. View at Google Scholar · View at Scopus
  27. J. Cho, H. Shen, H. Yu et al., “Ewing sarcoma gene Ews regulates hematopoietic stem cell senescence,” Blood, vol. 117, no. 4, pp. 1156–1166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Bertolotti, T. Melot, J. Acker, M. Vigneron, O. Delattre, and L. Tora, “EWS, but not EWS-FLI-1, is associated with both TFIID and RNA polymerase II: interactions between two members of the tet family, EWS and HTAF(II)68, and subunits of TFIID and RNA polymerase II complexes,” Molecular and Cellular Biology, vol. 18, no. 3, pp. 1489–1497, 1998. View at Google Scholar · View at Scopus
  29. A. Bertolotti, Y. Lutz, D. J. Heard, P. Chambon, and L. Tora, “hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II,” EMBO Journal, vol. 15, no. 18, pp. 5022–5031, 1996. View at Google Scholar · View at Scopus
  30. H. Zhou and K. A. W. Lee, “An hsRPB4/7-dependent yeast assay for trans-activation by the EWS oncogene,” Oncogene, vol. 20, no. 12, pp. 1519–1524, 2001. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Lee, B. K. Rhee, G.-Y. Bae, Y.-M. Han, and J. Kim, “Stimulation of Oct-4 activity by Ewing's sarcoma protein,” Stem Cells, vol. 23, no. 6, pp. 738–751, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. D. M. Gascoyne, G. R. Thomas, and D. S. Latchman, “The effects of Brn-3a on neuronal differentiation and apoptosis are differentially modulated by EWS and its oncogenic derivative EWS/Fli-1,” Oncogene, vol. 23, no. 21, pp. 3830–3840, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. G. R. Thomas and D. S. Latchman, “The pro-oncoprotein EWS (Ewing's sarcoma protein) interacts with the Brn-3a POU transcription factor and inhibits its ability to activate transcription,” Cancer Biology and Therapy, vol. 1, no. 4, pp. 428–432, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Fujimura, H. Siddique, L. Lee, V. N. Rao, and E. S. P. Reddy, “EWS-ATF-1 chimeric protein in soft tissue clear cell sarcoma associates with CREB-binding protein and interferes with p53-mediated trans-activation function,” Oncogene, vol. 20, no. 46, pp. 6653–6659, 2001. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Araya, K. Hirota, Y. Shimamoto et al., “Cooperative interaction of EWS with CREB-binding protein selectively activates hepatocyte nuclear factor 4-mediated transcription,” Journal of Biological Chemistry, vol. 278, no. 7, pp. 5427–5432, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. R.-A. Bailly, R. Bosselut, J. Zucman et al., “DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma,” Molecular and Cellular Biology, vol. 14, no. 5, pp. 3230–3241, 1994. View at Google Scholar · View at Scopus
  37. K. K. C. Li and K. A. W. Lee, “Transcriptional activation by the Ewing's sarcoma (EWS) oncogene can be cis-repressed by the EWS RNA-binding domain,” Journal of Biological Chemistry, vol. 275, no. 30, pp. 23053–23058, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. D. Alex and K. A. W. Lee, “RGG-boxes of the EWS oncoprotein repress a range of transcriptional activation domains,” Nucleic Acids Research, vol. 33, no. 4, pp. 1323–1331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. C. G. Burd and G. Dreyfuss, “Conserved structures and diversity of functions of RNA-binding proteins,” Science, vol. 265, no. 5172, pp. 615–621, 1994. View at Google Scholar · View at Scopus
  40. A. Bertolotti, B. Bell, and L. Tora, “The N-terminal domain of human TAF(II)68 displays transactivation and oncogenic properties,” Oncogene, vol. 18, no. 56, pp. 8000–8010, 1999. View at Google Scholar · View at Scopus
  41. M. Ladomery and G. Dellaire, “Multifunctional zinc finger proteins in development and disease,” Annals of Human Genetics, vol. 66, no. 5-6, pp. 331–342, 2002. View at Google Scholar · View at Scopus
  42. J. W. R. Schwabe and D. Rhodes, “Beyond zinc fingers: steroid hormone receptors have a novel structural motif for DNA recognition,” Trends in Biochemical Sciences, vol. 16, no. 8, pp. 291–296, 1991. View at Google Scholar · View at Scopus
  43. T. Ohno, M. Ouchida, L. Lee, Z. Gatalica, V. N. Rao, and E. S. P. Reddy, “The EWS gene, involved in Ewing family of tumors, malignant melanoma of soft parts and desmoplastic small round cell tumors, codes for an RNA binding protein with novel regulatory domains,” Oncogene, vol. 9, no. 10, pp. 3087–3097, 1994. View at Google Scholar · View at Scopus
  44. C. Tuerk and L. Gold, “Systemic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505–510, 1990. View at Google Scholar · View at Scopus
  45. A. Lerga, M. Hallier, L. Delva et al., “Identification of an RNA binding specificity for the potential splicing factor TLS,” Journal of Biological Chemistry, vol. 276, no. 9, pp. 6807–6816, 2001. View at Publisher · View at Google Scholar · View at Scopus
  46. A. Ramos, D. Hollingworth, and A. Pastore, “G-quartet-dependent recognition between the FMRP RGG box and RNA,” RNA, vol. 9, no. 10, pp. 1198–1207, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. L. A. Hanakahi, H. Sun, and N. Maizels, “High affinity interactions of nucleolin with G-G-paired rDNA,” Journal of Biological Chemistry, vol. 274, no. 22, pp. 15908–15912, 1999. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Oyoshi and R. Kurokawa, “Structure of noncoding RNA is a determinant of function of RNA binding proteins in transcriptional regulation,” Cell & Bioscience, vol. 2, no. 1, article 1, 2012. View at Google Scholar
  49. S. Ishii, F. Imamoto, and Y. Yamanashi, “Characterization of the promoter region of the human c-erbB-2 protooncogene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 84, no. 13, pp. 4374–4378, 1987. View at Google Scholar · View at Scopus
  50. P. Pieler and O. Theunissen, “TFIIA: nine fingers—three hands?” Trends in Biochemical Sciences, vol. 18, no. 6, pp. 226–230, 1993. View at Publisher · View at Google Scholar · View at Scopus
  51. M. P. Paronetto, B. Miñana, and J. Valcárcel, “The Ewing sarcoma protein regulates DNA damage-induced alternative splicing,” Molecular Cell, vol. 43, no. 3, pp. 353–368, 2011. View at Google Scholar
  52. J. C. Deloulme, L. Prichard, O. Delattre, and D. R. Storm, “The prooncoprotein EWS binds calmodulin and is phosphorylated by protein kinase C through an IQ domain,” Journal of Biological Chemistry, vol. 272, no. 43, pp. 27369–27377, 1997. View at Publisher · View at Google Scholar · View at Scopus
  53. K. Takahama, K. Kino, S. Arai, R. Kurokawa, and T. Oyoshi, “Identification of Ewing's sarcoma protein as a G-quadruplex DNA- and RNA-binding protein,” FEBS Journal, vol. 278, no. 6, pp. 988–998, 2011. View at Publisher · View at Google Scholar · View at Scopus
  54. N. Araya, H. Hiraga, K. Kako, Y. Arao, S. Kato, and A. Fukamizu, “Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1,” Biochemical and Biophysical Research Communications, vol. 329, no. 2, pp. 653–660, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. L. Hastings and A. R. Krainer, “Pre-mRNA splicing in the new millennium,” Current Opinion in Cell Biology, vol. 13, no. 3, pp. 302–309, 2001. View at Publisher · View at Google Scholar · View at Scopus
  56. J. Rappsilber, U. Ryder, A. I. Lamond, and M. Mann, “Large-scale proteomic analysis of the human spliceosome,” Genome Research, vol. 12, no. 8, pp. 1231–1245, 2002. View at Publisher · View at Google Scholar · View at Scopus
  57. W. Hackl and R. Lührmann, “Molecular cloning and subcellular localisation of the snRNP-associated protein 69KD, a structural homologue of the proto-oncoproteins TLS and EWS with RNA and RNA-binding properties,” Journal of Molecular Biology, vol. 264, no. 5, pp. 843–851, 1996. View at Publisher · View at Google Scholar · View at Scopus
  58. L. L. Knoop and S. J. Baker, “The splicing factor U1C represses EWS/FLI-mediated transactivation,” Journal of Biological Chemistry, vol. 275, no. 32, pp. 24865–24871, 2000. View at Publisher · View at Google Scholar · View at Scopus
  59. S. Michaud and R. Reed, “A functional association between the 5 and 3 splice sites is established in the earliest prespliceosome complex (E) in mammals,” Genes and Development, vol. 7, no. 6, pp. 1008–1020, 1993. View at Google Scholar · View at Scopus
  60. D. Zhang, A. J. Paley, and G. Childs, “The transcriptional repressor, ZFM1 interacts with and modulates the ability of EWS to activate transcription,” Journal of Biological Chemistry, vol. 273, no. 29, pp. 18086–18091, 1998. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Wu and M. R. Green, “Identification of a human protein that recognizes the 3' splice site during the second step of pre-mRNA splicing,” EMBO Journal, vol. 16, no. 14, pp. 4421–4432, 1997. View at Publisher · View at Google Scholar · View at Scopus
  62. L. Yang, H. A. Chansky, and D. D. Hickstein, “EWS·Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing,” Journal of Biological Chemistry, vol. 275, no. 48, pp. 37612–37618, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. H. A. Chansky, M. Hu, D. D. Hickstein, and L. Yang, “Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein,” Cancer Research, vol. 61, no. 9, pp. 3586–3590, 2001. View at Google Scholar · View at Scopus
  64. M. Dutertre, G. Sanchez, M.-C. De Cian et al., “Cotranscriptional exon skipping in the genotoxic stress response,” Nature Structural and Molecular Biology, vol. 17, no. 11, pp. 1358–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. D. L. Bentley, “Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors,” Current Opinion in Cell Biology, vol. 17, no. 3, pp. 251–256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Sanchez, D. Bittencourt, K. Laud et al., “Alteration of cyclin D1 transcript elongation by a mutated transcription factor up-regulates the oncogenic D1b splice isoform in cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6004–6009, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. D. C. Betticher, N. Thatcher, H. J. Altermatt, P. Hoban, W. D. J. Ryder, and J. Heighway, “Alternate splicing produces a novel cyclin D1 transcript,” Oncogene, vol. 11, no. 5, pp. 1005–1011, 1995. View at Google Scholar · View at Scopus
  68. K. E. Knudsen, J. Alan Diehl, C. A. Haiman, and E. S. Knudsen, “Cyclin D1: polymorphism, aberrant splicing and cancer risk,” Oncogene, vol. 25, no. 11, pp. 1620–1628, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. G. Sanchez, O. Delattre, D. Auboeuf, and M. Dutertre, “Coupled alteration of transcription and splicing by a single oncogene: boosting the effect on cyclin D1 activity,” Cell Cycle, vol. 7, no. 15, pp. 2299–2305, 2008. View at Google Scholar · View at Scopus
  70. R. I. Gregory, K.-P. Yan, G. Amuthan et al., “The Microprocessor complex mediates the genesis of microRNAs,” Nature, vol. 432, no. 7014, pp. 235–240, 2004. View at Publisher · View at Google Scholar · View at Scopus
  71. Y. Lee, K. Jeon, J.-T. Lee, S. Kim, and V. N. Kim, “MicroRNA maturation: stepwise processing and subcellular localization,” EMBO Journal, vol. 21, no. 17, pp. 4663–4670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. E. J. Sohn, J. Park, S. I. Kang, and Y. P. Wu, “Accumulation of pre-let-7g and downregulation of mature let-7g with the depletion of EWS,” Biochemical and Biophysical Research Communications, vol. 426, no. 1, pp. 89–93, 2012. View at Google Scholar
  73. X. Wang, S. Arai, X. Song et al., “Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription,” Nature, vol. 454, no. 7200, pp. 126–130, 2008. View at Publisher · View at Google Scholar · View at Scopus
  74. C. M. Azzalin, P. Reichenbach, L. Khoriauli, E. Giulotto, and J. Lingner, “Telomeric repeat-containing RNA and RNA surveillance factors at mammalian chromosome ends,” Science, vol. 318, no. 5851, pp. 798–801, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. J. W. Harper and S. J. Elledge, “The DNA damage response: ten years after,” Molecular Cell, vol. 28, no. 5, pp. 739–745, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. V. L. J. Tybulewicz, C. E. Crawford, P. K. Jackson, R. T. Bronson, and R. C. Mulligan, “Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene,” Cell, vol. 65, no. 7, pp. 1153–1163, 1991. View at Google Scholar · View at Scopus
  77. Y. Xu and D. Baltimore, “Dual roles of ATM in the cellular response to radiation and in cell growth control,” Genes and Development, vol. 10, no. 19, pp. 2401–2410, 1996. View at Google Scholar · View at Scopus
  78. W. M. Baarends, R. van der Laan, and J. A. Grootegoed, “DNA repair mechanisms and gametogenesis,” Reproduction, vol. 121, no. 1, pp. 31–39, 2001. View at Google Scholar · View at Scopus
  79. K. E. Hurov, C. Cotta-Ramusino, and S. J. Elledge, “A genetic screen identifies the Triple T complex required for DNA damage signaling and ATM and ATR stability,” Genes and Development, vol. 24, no. 17, pp. 1939–1950, 2010. View at Publisher · View at Google Scholar · View at Scopus
  80. B. C. O'Connell, B. Adamson, J. R. Lydeard et al., “A genome-wide camptothecin sensitivity screen identifies a mammalian MMS22L-NFKBIL2 complex required for genomic stability,” Molecular Cell, vol. 40, no. 4, pp. 645–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  81. I. V. Klevernic, S. Morton, R. J. Davis, and P. Cohen, “Phosphorylation of Ewing's sarcoma protein (EWS) and EWS-Fli1 in response to DNA damage,” Biochemical Journal, vol. 418, no. 3, pp. 625–634, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. L. Spahn, R. Petermann, C. Siligan, J. A. Schmid, D. N. T. Aryee, and H. Kovar, “Interaction of the EWS NH2 terminus with BARD1 links the Ewing's sarcoma gene to a common tumor suppressor pathway,” Cancer Research, vol. 62, no. 16, pp. 4583–4587, 2002. View at Google Scholar · View at Scopus
  83. M. J. Muñoz, M. S. P. Santangelo, M. P. Paronetto et al., “DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation,” Cell, vol. 137, no. 4, pp. 708–720, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. J. Falck, N. Mailand, R. G. Syljuåsen, J. Bartek, and J. Lukas, “The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis,” Nature, vol. 410, no. 6830, pp. 842–847, 2001. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Zinszner, D. Immanuel, Y. Yin, F.-X. Liang, and D. Ron, “A topogenic role for the oncogenic N-terminus of TLS: nucleolar localization when transcription is inhibited,” Oncogene, vol. 14, no. 4, pp. 451–461, 1997. View at Google Scholar · View at Scopus
  86. M. Neumann, E. Bentmann, D. Dormann et al., “FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations,” Brain, vol. 134, no. 9, pp. 2595–2609, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Doi, K. Okamura, P. O. Bauer et al., “RNA-binding protein TLS is a major nuclear aggregate-interacting protein in Huntingtin exon 1 with expanded polyglutamine-expressing cells,” Journal of Biological Chemistry, vol. 283, no. 10, pp. 6489–6500, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. E. D. Huey, R. Ferrari, J. H. Moreno et al., “FUS and TDP43 genetic variability in FTD and CBS,” Neurobiology of Aging, vol. 33, no. 5, pp. 1016.e9–1016.e17, 2012. View at Publisher · View at Google Scholar · View at Scopus
  89. H. Ilieva, M. Polymenidou, and D. W. Cleveland, “Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond,” Journal of Cell Biology, vol. 187, no. 6, pp. 761–772, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. M. Cushman, B. S. Johnson, O. D. King, A. D. Gitler, and J. Shorter, “Prion-like disorders: blurring the divide between transmissibility and infectivity,” Journal of Cell Science, vol. 123, no. 8, pp. 1191–1201, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. A. D. Gitler and J. Shorter, “RNA-binding proteins with prion-like domains in ALS and FTLD-U,” Prion, vol. 5, no. 3, pp. 179–187, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Alberti, R. Halfmann, O. King, A. Kapila, and S. Lindquist, “A systematic survey identifies prions and illuminates sequence features of prionogenic proteins,” Cell, vol. 137, no. 1, pp. 146–158, 2009. View at Publisher · View at Google Scholar · View at Scopus
  93. J. A. Toombs, B. R. McCarty, and E. D. Ross, “Compositional determinants of prion formation in yeast,” Molecular and Cellular Biology, vol. 30, no. 1, pp. 319–332, 2010. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Couthouisa, M. P. Harta, J. Shorter et al., “A yeast functional screen predicts new candidate ALS disease genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 52, pp. 20881–20890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Couthouis, M. P. Hart, R. Erion et al., “Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis,” Human Molecular Genetics, vol. 21, no. 13, pp. 2899–2911, 2012. View at Google Scholar
  96. J. P. Venables, “Unbalanced alternative splicing and its significance in cancer,” BioEssays, vol. 28, no. 4, pp. 378–386, 2006. View at Publisher · View at Google Scholar · View at Scopus
  97. T. I. Orban and E. Olah, “Emerging roles of BRCA1 alternative splicing,” Molecular Pathology, vol. 56, no. 4, pp. 191–197, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. M. Azuma, L. J. Embree, H. Sabaawy, and D. D. Hickstein, “Ewing sarcoma protein Ewsr1 maintains mitotic integrity and proneural cell survival in the zebrafish embryo,” PLoS ONE, vol. 2, no. 10, article e979, 2007. View at Publisher · View at Google Scholar · View at Scopus
  99. B. A. A. Weaver and D. W. Cleveland, “Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death,” Cancer Cell, vol. 8, no. 1, pp. 7–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  100. S. K. Halder, G. Anumanthan, R. Maddula et al., “Oncogenic function of a novel WD-domain protein, STRAP, in human carcinogenesis,” Cancer Research, vol. 66, no. 12, pp. 6156–6166, 2006. View at Publisher · View at Google Scholar · View at Scopus
  101. G. Anumanthan, S. K. Halder, D. B. Friedman, and P. K. Datta, “Oncogenic serine-threonine kinase receptor-associated protein modulates the function of ewing sarcoma protein through a novel mechanism,” Cancer Research, vol. 66, no. 22, pp. 10824–10832, 2006. View at Publisher · View at Google Scholar · View at Scopus
  102. S. Pahlich, L. Quero, B. Roschitzki, R. P. Leemann-Zakaryan, and H. Gehring, “Analysis of Ewing Sarcoma (EWS)-binding proteins: interaction with hnRNP M, U, and RNA-helicases p68/72 within protein-RNA complexes,” Journal of Proteome Research, vol. 8, no. 10, pp. 4455–4465, 2009. View at Publisher · View at Google Scholar · View at Scopus