Review Article

The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

Figure 2

Cell surface PDI, NO, and SNO-PDI. (A) Cell surface PDI reduces NO from extracellular SNO proteins (SNO-P) and in the process undergoes thiol modification. (B) Hyperactivation of the NMDAr leads to an intracellular influx of Ca2+ ions (NMDAr may also undergo reversible S-nitrosylation to ameliorate excessive activity). (C) Inhibition of mitochondria contributes to an increase in intracellular NO which is potentially oxidized by O2 leading to an increase in NO, nNOS, ROS, and RNS. (D) Increases in RNS/ROS alters the ER redox environment, and NO S-nitrosylates Ca2+ ryanodine (Ryn) receptor leading to a disruption in Ca2+ homeostasis. (E) ER-resident proteins such as PDI are vulnerable to S-nitrosylation, deactivating its isomerase and chaperone activity, leading to accumulation of misfolded proteins, ER stress, and UPR induction.
797914.fig.002