Table of Contents

This article has been retracted as it was submitted for publication without the prior knowledge or approval of Dr. Aloysius Siriwardena, who has contributed to the article. Additionally, it has been submitted without prior approval of the Centre National de la Recherche Scientifique (CNRS) and the laboratory in which the intellectual ideas behind the syntheses were established [1].

View the full Retraction here.


  1. C. Benhaoua, “New 1,2,3-triazole iminosugars derivatives using click chemistry,” International Journal of Carbohydrate Chemistry, vol. 2012, Article ID 394574, 10 pages, 2012.
International Journal of Carbohydrate Chemistry
Volume 2012, Article ID 394574, 10 pages
Research Article

New 1,2,3-Triazole Iminosugars Derivatives Using Click Chemistry

Laboratoire Synthèse et Catalyse, LSCT, Université Ibn Khaldoun, Tiaret 14000, Algeria

Received 17 March 2012; Accepted 28 April 2012

Academic Editor: R. J. Linhardt

Copyright © 2012 Chahrazed Benhaoua. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Mitrakou, N. Tountas, A. E. Raptis, R. J. Bauer, H. Schulz, and S. A. Raptis, “Long-term effectiveness of a new alpha-glucosidase inhibitor (BAY m1099-miglitol) in insulin-treated type 2 diabetes mellitus,” Diabetic Medicine, vol. 15, no. 8, pp. 657–660, 1998. View at Google Scholar
  2. L. J. Scott and C. M. Spencer, “Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus,” Drugs, vol. 59, no. 3, pp. 521–549, 2000. View at Google Scholar · View at Scopus
  3. T. M. Block, X. Lu, F. M. Platt et al., “Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 6, pp. 2235–2239, 1994. View at Google Scholar
  4. A. Mehta, S. Carrouee, B. Conyers et al., “Inhibition of hepatitis B virus DNA replication by imino sugars without the inhibition of the DNA polymerase: therapeutic implications,” Hepatology, vol. 33, no. 6, pp. 1488–1495, 2001. View at Publisher · View at Google Scholar
  5. B. Andersen, A. Rassov, N. Westergaard, and K. Lundgren, “Inhibition of glycogenolysis in primary rat hepatocytes by 1,4-dideoxy-1,4-imino-D-arabinitol,” Biochemical Journal, vol. 342, no. 3, pp. 545–550, 1999. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. Zhou, Y. Zhao, K. M. O'Boyle, and P. V. Murphy, “Hybrid angiogenesis inhibitors: synthesis and biological evaluation of bifunctional compounds based on 1-deoxynojirimycin and aryl-1,2,3-triazoles,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 3, pp. 954–958, 2008. View at Publisher · View at Google Scholar
  7. H. C. Kolb, M. G. Finn, and K. B. Sharpless, “Click chemistry: diverse chemical function from a few good reactions,” Angewandte Chemie International Edition, vol. 40, no. 11, pp. 2004–2021, 2001. View at Google Scholar
  8. R. Huisgen, G. Szeimies, and L. Mobius, “1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen,” Chemische Berichte, vol. 100, no. 8, pp. 2494–2507, 1967. View at Publisher · View at Google Scholar
  9. C. W. Tornoe, C. Christensen, and M. Meldal, “Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides,” The Journal of Organic Chemistry, vol. 67, no. 9, pp. 3057–3064, 2002. View at Publisher · View at Google Scholar
  10. K. V. Gothelf and K. A. Joergensen, “Asymmetric 1,3-dipolar cycloaddition reactions,” Chemical Reviews, vol. 98, no. 2, pp. 863–910, 1998. View at Publisher · View at Google Scholar
  11. T. R. Chan, R. Hilgraf, K. B. Sharpless, and V. V. Fokin, “Polytriazoles as copper(I)-stabilizing ligands in catalysis,” Organic Letters, vol. 6, no. 17, pp. 2853–2855, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Diot, M. I. Garcoa-Moreno, S. G. Gouin, C. O. Mellet, and K. Kovensky, “Multivalent iminosugars to modulate affinity and selectivity for glycosidases,” Organic and Biomolecular Chemistry, vol. 7, no. 2, pp. 357–363, 2009. View at Publisher · View at Google Scholar
  13. I. Kumar, N. A. Mir, C. V. Rode, and B. P. Wakhloo, “Intramolecular Huisgen [3+2] cycloaddition in water: synthesis of fused pyrrolidine-triazoles,” Tetrahedron, vol. 23, no. 3-4, pp. 225–229, 2012. View at Publisher · View at Google Scholar
  14. V. Haridas, K. Lal, Y. K. Sharma, and S. Upreti, “Design, synthesis, and self-assembling properties of novel triazolophanes,” Organic Letters, vol. 10, no. 8, pp. 1645–1647, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. C. Benhaoua, “One-pot synthesis of pyrrolidine-2-ones from erythruronolactone and amine,” Organic Chemistry International, vol. 2012, Article ID 482952, 6 pages, 2012. View at Publisher · View at Google Scholar
  16. A. Maisonial, P. Serafin, M. Traïkia et al., “Click chelators for platinum-based anticancer drugs,” European Journal of Inorganic Chemistry, vol. 2008, no. 2, pp. 298–305, 2008. View at Publisher · View at Google Scholar · View at Scopus