Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2012, Article ID 456491, 7 pages
Research Article

Scanning Electron Microscopy and Kinetic Studies of Ketene-Acetylated Wood/Cellulose High-Density Polyethylene Blends

1Department of Chemistry, Ibrahim Badamasi Babangida University, Lapai, Nigeria
2Department of Chemistry, University of Ilorin, Ilorin, Nigeria

Received 16 August 2012; Revised 17 November 2012; Accepted 18 November 2012

Academic Editor: R. J. Linhardt

Copyright © 2012 Yakubu Azeh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Zhang, T. J. Elder, Y. Pu, and A. J. Ragauskas, “Facile synthesis of spherical cellulose nanoparticles,” Carbohydrate Polymers, vol. 69, no. 3, pp. 607–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. H. B. T. Abdulaziz, Reactive extraction of sugars from oil palm fruit bunch hydrolysate using naphthalene-2-boronic acid [M.S. thesis], Graduate Faculty Universiti of Sains Malaysia, 2007.
  3. A. Yakubu, T. M. Umar, and S. S. D. Mohammed, “Chemical modification of microcrystalline cellulose: improvement of barrier surface properties to enhance surface interactions with some synthetic polymers for biodegradable packaging material processing and applications in textile, food and pharmaceutical industry,” Advances in Applied Science Research, vol. 2, no. 6, pp. 532–540, 2011. View at Google Scholar
  4. G. Rodionova, M. Lenes, Ø. Eriksen, and Ø. Gregersen, “Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications,” Cellulose, vol. 18, no. 1, pp. 127–134, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Moon, A. Martini, J. Nairn, J. Simonsen, and J. Youngblood, “Cellulose nanomaterials review: structure, properties and nanocomposites,” Chemical Society Reviews, vol. 40, no. 7, pp. 3941–3994, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. M. Sercer, P. Raos, and M. Rujnic-Sokele, Processing of wood-thermoplastic composites,
  7. A. Biswas, B. C. Saha, J. W. Lawton, R. L. Shogren, and J. L. Willett, “Process for obtaining cellulose acetate from agricultural by-products,” Carbohydrate Polymers, vol. 64, no. 1, pp. 134–137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. G. A. Olatunji, “The eighty-eight inaugural lecture,” in Journey to the Promised Land: The Travails of an Organic Chemist, p. 17, Department of Chemistry, Faculty of Science, University of Ilorin, Ilorin, Nigeria, 2009. View at Google Scholar
  9. B. Mohebby, “Application of ATR infrared spectroscopy in wood acetylation,” Journal of Agricultural Science and Technology, vol. 10, no. 3, pp. 253–259, 2008. View at Google Scholar · View at Scopus
  10. L. M. Ilharco, A. R. Garcia, J. Lopes da Silva, and L. F. Vieira Ferreira, “Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone,” Langmuir, vol. 13, no. 15, pp. 4126–4132, 1997. View at Google Scholar · View at Scopus
  11. I. Filpponen, The synthetic strategies for unique properties in cellulose nanocrystals materials [Ph.D. thesis of Philosophy], Graduate Faculty of North Carolina State University, Wood & Paper Science, Raleigh, NC, USA, 2009.
  12. A. K. Bledzki, A. A. Mamun, M. Lucka-Gabor, and V. S. Gutowski, “The effects of acetylation on properties of flax fibre and its polypropylene composites,” Express Polymer Letters, vol. 2, no. 6, pp. 413–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Yakubu, G. A. Olatunji, O. Sunday, and A. Olubunmi, “Ketene acetylated wood cellulose for industrial applications in wood-base and polymer industry,” Journal of Environmental Science and Technology, vol. 5, no. 3, pp. 168–176, 2012. View at Publisher · View at Google Scholar
  14. G. T. Ciacco, D. L. Morgado, E. Frollini, S. Possidonio, and O. A. El Seoud, “Some aspects of acetylation of untreated and mercerized sisal cellulose,” Journal of the Brazilian Chemical Society, vol. 21, no. 1, pp. 71–77, 2010. View at Google Scholar · View at Scopus
  15. S. Samira, A. I. Nor, A. Sanaz, W. Y. Wan Md Zin, and A. R. M. Zaki, “Effects of fibre esterification on fundamental properties of oil palm empty fruit bunch fibre/poly (butylenes adipate-co-terephthalate) biocomposites,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 1327–1346, 2012. View at Publisher · View at Google Scholar
  16. S. Kamel, “Nanotechnology and its applications in lignocellulosic composites, a mini review,” Express Polymer Letters, vol. 1, no. 9, pp. 546–575, 2007. View at Publisher · View at Google Scholar
  17. R. M. Rowell, R. H. S. Wang, and J. A. Hyatt, “Flakeboards made from Aspen and Southern Pine Wood flakes Reacted with Ketene,” Journal of Wood Chemistry and Technology, vol. 6, no. 3, pp. 449–471, 1986. View at Publisher · View at Google Scholar
  18. A. G. Supri and B. Y. Lim, “Effect of treated and untreated filler loading on the mechanical, morphological, and water absorption properties of water hyacinth fibers-low density polyethylene composites,” Journal of Physical Science, vol. 20, no. 2, pp. 85–96, 2009. View at Google Scholar
  19. S. A. Abdulkareem and B. Garba, “Novel application of polymer dissolution technique,” Nigerian Journal of Pure and Applied Sciences, vol. 20, pp. 1799–1485, 2005. View at Google Scholar
  20. J. George, S. S. Bhagawan, and S. Thomas, “Effects of environment on the properties of low-density polyethylene composites reinforced with pineapple-leaf fibre,” Composites Science and Technology, vol. 58, no. 9, pp. 1471–1485, 1998. View at Publisher · View at Google Scholar · View at Scopus
  21. V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, “A study of the effect of acetylation and propionylation surface treatments on natural fibres,” Composites A, vol. 36, no. 8, pp. 1110–1118, 2005. View at Publisher · View at Google Scholar · View at Scopus