Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013, Article ID 243695, 8 pages
http://dx.doi.org/10.1155/2013/243695
Research Article

Development and Characterization of Semi-IPN Silver Nanocomposite Hydrogels for Antibacterial Applications

1Department of Chemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pardesh 515 003, India
2Department of Polymer Science and Technology, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh 515 003, India
3Department of Physics, Rayalaseema University, Kurnool, Andhra Pardesh 518 002, India

Received 3 January 2013; Revised 16 February 2013; Accepted 19 February 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 A. Chandra Babu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu et al., “Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity,” Macromolecules, vol. 37, no. 5, pp. 1787–1792, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Porel, S. Singh, S. S. Harsha, D. N. Rao, and T. P. Radhakrishnan, “Nanoparticle-embedded polymer: in situ synthesis, free-standing films with highly monodisperse silver nanoparticles and optical limiting,” Chemistry of Materials, vol. 17, no. 1, pp. 9–12, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. Delamarche, M. Geissler, J. Vichiconti et al., “Electroless deposition of NiB on 15 inch glass substrates for the fabrication of transistor gates for liquid crystal displays,” Langmuir, vol. 19, no. 14, pp. 5923–5935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. G. Boyes, B. Akgun, W. J. Brittain, and M. D. Foster, “Synthesis, characterization, and properties of polyelectrolyte block copolymer brushes prepared by atom transfer radical polymerization and their use in the synthesis of metal nanoparticles,” Macromolecules, vol. 36, no. 25, pp. 9539–9548, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Yoda, A. Hasegawa, H. Suda et al., “Preparation of a platinum and palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation,” Chemistry of Materials, vol. 16, no. 12, pp. 2363–2368, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, vol. 271, no. 5251, pp. 933–937, 1996. View at Google Scholar · View at Scopus
  8. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han, and S. Nie, “Luminescent quantum dots for multiplexed biological detection and imaging,” Current Opinion in Biotechnology, vol. 13, pp. 40–46, 2002. View at Publisher · View at Google Scholar
  9. X. M. Wu, H. Liu, J. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 4, pp. 41–46, 2003. View at Google Scholar · View at Scopus
  10. I. Brigger, C. Dubernet, and P. Couvreur, “Nanoparticles in cancer therapy and diagnosis,” Advanced Drug Delivery Reviews, vol. 54, no. 5, pp. 631–651, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Forestier, P. Gerrier, C. Chaumard, A. M. Quero, P. Couvreur, and C. Labarre, “Effect of nanoparticle-bound ampicillin on the survival of Listeria monocytogenes in mouse peritoneal macrophages,” Journal of Antimicrobial Chemotherapy, vol. 30, no. 2, pp. 173–179, 1992. View at Google Scholar · View at Scopus
  12. I. Sondi, O. Siiman, and E. Matijević, “Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody−aminodextran−CdS nanoparticle conjugates,” Langmuir, vol. 16, no. 7, pp. 3107–3118, 2000. View at Publisher · View at Google Scholar
  13. O. Siiman, E. Matijevic, and I. Sondi, “Semi conductor nanoparticles for analysis of blood cell populations and methods of making same,” U.S. Patent 6, 235, 540 B1.
  14. A. Biswas, O. C. Aktas, U. Schürmann et al., “Tunable multiple plasmon resonance wavelengths response from multicomponent polymer-metal nanocomposite systems,” Applied Physics Letters, vol. 84, no. 14, pp. 2655–2657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. M. Ajayan, L. S. Schadler, and P. V. Braun, Nanocomposite Science and Technology, Wiley-VCH, Weinheim, Germany, 2003.
  16. Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, “Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications,” Polymer, vol. 48, no. 1, pp. 158–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Lu, P. Spyra, Y. Mei, M. Ballauff, and A. Pich, “Composite hydrogels: robust carriers for catalytic nanoparticles,” Macromolecular Chemistry and Physics, vol. 208, no. 3, pp. 254–261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device,” Nature Materials, vol. 3, no. 12, pp. 918–922, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Yoshida, M. Tanagawa, S. Matsumoto, T. Yamada, and M. Atsuta, “Antibacterial activity of resin composites with silver-containing materials,” European Journal of Oral Sciences, vol. 107, no. 4, pp. 290–296, 1999. View at Google Scholar · View at Scopus
  20. F. Furno, K. S. Morley, B. Wong et al., “Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection?” Journal of Antimicrobial Chemotherapy, vol. 54, no. 6, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. W. F. Lee and K. T. Tsao, “Preparation and properties of nanocomposite hydrogels containing silver nanoparticles by EX situ polymerization,” Journal of Applied Polymer Science, vol. 100, no. 5, pp. 3653–3661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. S. Quintavalla and L. Vicini, “Antimicrobial food packaging in meat industry,” Meat Science, vol. 62, no. 3, pp. 373–380, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Tankhiwale and S. K. Bajpai, “Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material,” Colloids and Surfaces B, vol. 69, no. 2, pp. 164–168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Bandyopadhyaya, M. V. Sivaiah, and P. A. Shankar, “Silver-embedded granular activated carbon as an antibacterial medium for water purification,” Journal of Chemical Technology and Biotechnology, vol. 83, no. 8, pp. 1177–1180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Maioli, A. Bestetti, A. Mauri, C. Pozzato, and R. Paroni, “Removal of radioisotopes in solution and bactericidal/bacteriostatic sterilising power in activated carbon and metal silver filters,” Environmental Toxicology and Pharmacology, vol. 27, no. 1, pp. 49–53, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. A. L. Lehninger, D. L. Nelson, and M. M. Cox, Principles of Biochemistry, Worth Publishing, New York, NY, USA, 2nd ed edition, 1993.
  27. S. Y. Liau, D. C. Read, W. J. Pugh, J. R. Furr, and A. D. Russell, “Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions,” Letters in Applied Microbiology, vol. 25, no. 4, pp. 279–283, 1997. View at Google Scholar · View at Scopus
  28. G. McDonnell and A. D. Russell, “Antiseptics and disinfectants: activity, action, and resistance,” Clinical Microbiology Reviews, vol. 12, no. 1, pp. 147–179, 2001. View at Google Scholar · View at Scopus
  29. J. R. Morones, J. L. Elechiguerra, A. Camacho et al., “The bactericidal effect of silver nanoparticles,” Nanotechnology, vol. 16, no. 10, pp. 2346–2353, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Wang, N. T. Flynn, and R. Langer, “Controlled structure and properties of thermoresponsive nanoparticle-hydrogel composites,” Advanced Materials, vol. 16, no. 13, pp. 1074–1079, 2004. View at Publisher · View at Google Scholar
  31. J. Zhang, S. Xu, and E. Kumacheva, “Photogeneration of fluorescent silver nanoclusters in polymer microgels,” Advanced Materials, vol. 17, no. 19, pp. 2336–2340, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Biffis, N. Orlandi, and B. Corian, “Microgel-stabilized metal nanoclusters: size control by microgel nanomorphology,” Advanced Materials, vol. 15, no. 18, pp. 1551–1555, 2003. View at Publisher · View at Google Scholar
  33. Y. Xiang and D. Chen, “Preparation of a novel pH-responsive silver nanoparticle/poly(HEMA-PEGMA-MAA) composite hydrogel,” European Polymer Journal, vol. 43, no. 10, pp. 4178–4187, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. M. Mohan, K. Lee, T. Premkumar, and K. E. Geckeler, “Hydrogel networks as nanoreactors: a novel approach to silver nanoparticles for antibacterial applications,” Polymer, vol. 48, no. 1, pp. 158–164, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. Heinze and T. Liebert, “Unconventional methods in cellulose functionalization,” Progress in Polymer Science, vol. 26, no. 9, pp. 1689–1762, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Guo, G. W. Skinner, W. W. Harcum, and P. E. Barnum, “Pharmaceutical applications of naturally occurring water-soluble polymers,” Pharmaceutical Science and Technology Today, vol. 1, no. 6, pp. 254–261, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. K. Pal, A. K. Banthia, and D. K. Majumdar, “Preparation of novel pH-sensitive hydrogels of carboxymethyl cellulose acrylates: a comparative study,” Materials and Manufacturing Processes, vol. 21, pp. 877–882, 2006. View at Publisher · View at Google Scholar
  38. C. Saykan, R. Coskun, and S. Kirbag, “Poly(crotonic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid)-metal complexes with copper(II), cobalt(II), and nickel(II): synthesis, characterization and antimicrobial activity,” European Polymer Journal, vol. 43, pp. 4028–4036, 2007. View at Publisher · View at Google Scholar
  39. M. V. Dinu, M. M. Ozmen, E. S. Dragan, and O. Okay, “Freezing as a path to build macroporous structures: superfast responsive polyacrylamide hydrogels,” Polymer, vol. 48, no. 1, pp. 195–204, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Conti, L. Maggi, L. Segale et al., “Matrices containing NaCMC and HPMC. 1. Dissolution performance characterization,” International Journal of Pharmaceutics, vol. 333, no. 1-2, pp. 136–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Varaprasad, K. Vimala, S. Ravindra, N. N. Reddy, and K. Mohana Raju, “Development of sodium carboxymethyl cellulose-based poly(acrylamide-co-2acrylamido-2-methyl-1-propane sulfonic acid) hydrogels for in vitro drug release studies of ranitidine hydrochloride an anti-ulcer drug,” Polymer-Plastics Technology and Engineering, vol. 50, no. 1199, 1207 pages, 2011. View at Publisher · View at Google Scholar
  42. A. Pourjavadi, H. Ghasemzadeh, and F. Mojahedi, “Swelling properties of CMC-g-Poly (AAm-co-AMPS) superabsorbent hydrogel,” Journal of Applied Polymer Science, vol. 113, no. 6, pp. 3442–3449, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. J. Wu, J. Lin, M. Zhou, and C. Wei, “Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite,” Macromolecular Rapid Communications, vol. 21, no. 15, pp. 1032–1034, 2000. View at Publisher · View at Google Scholar
  44. A. S. Hoffmann, “Intelligent polymers (in Medicine and Biotechnology),” in Polymeric Materials Encyclopedia, J. C. Salamone, Ed., vol. 5, p. 3282, CRC Press, Boca Raton, Fla, USA, 1996. View at Google Scholar
  45. A. Taleb, C. Petit, and M. P. Pileni, “Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles,” Journal of Physical Chemistry B, vol. 102, no. 12, pp. 2214–2220, 1998. View at Google Scholar · View at Scopus
  46. M. A. Noginov, G. Zhu, M. Bahoura et al., “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Applied Physics B, vol. 86, no. 3, pp. 455–460, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, vol. 25, Springer, Berlin, Germany, 1995.
  48. S. L. Amruth, J. S. Sathish, B. P. Ramachandra, and B. P. J, “Synthesis, characterization and dyeing assessment of some novel disperse azodyes based on 1-(4-amino 2-methyl phenyl)-2-(n- phenyl amino) ethanone onnylon and polyester fabrics,” Journal of Chemical and Pharmaceutical Researc, vol. 2, pp. 478–482, 2010. View at Google Scholar