Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013 (2013), Article ID 340546, 7 pages
http://dx.doi.org/10.1155/2013/340546
Research Article

Efficient Synthesis of Dispiropyrrolidines Linked to Sugars

Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Received 22 June 2013; Revised 16 September 2013; Accepted 17 September 2013

Academic Editor: J. F. Vliegenthart

Copyright © 2013 Sirisha Nallamala and Raghavachary Raghunathan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Blow, “Glycobiology: a spoonful of sugar,” Nature, vol. 457, no. 7229, pp. 617–620, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. V. R. Doddi, H. P. Kokatla, A. P. J. Pal, R. K. Basak, and Y. D. Vankar, “Synthesis of hybrids of D-glucose and D-galactose with pyrrolidine-based iminosugars as glycosidase inhibitors,” European Journal of Organic Chemistry, no. 34, pp. 5731–5739, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. A. Luzhetskyy, A. Vente, and A. Bechthold, “Glycosyltransferases involved in the biosynthesis of biologically active natural products that contain oligosaccharides,” Molecular BioSystems, vol. 1, no. 2, pp. 117–126, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. L. Jane and N. John, “Phenazine natural products: biosynthesis, synthetic analogues, and biological activity,” Chemical Reviews, vol. 104, no. 3, pp. 1663–1686, 2004. View at Publisher · View at Google Scholar
  5. R. E. Moore and P. J. Scheuer, “Palytoin: a new marine toxin from a coelenterate,” Science, vol. 172, no. 172, pp. 495–498, 1971. View at Google Scholar · View at Scopus
  6. R. E. Moore and G. Bartolini, “Structure of palytoxin,” Journal of the American Chemical Society, vol. 103, no. 9, pp. 2491–2494, 1981. View at Publisher · View at Google Scholar
  7. J. R. Pougny, M. A. M. Nassr, and P. J. Sinaÿ, “Mercuricyclisation in carbohydrate chemistry: a highly stereoselective route to α-D-C-glucopyranosyl derivatives,” Journal of the Chemical Society, Chemical Communications, pp. 375–376, 1981. View at Publisher · View at Google Scholar
  8. S.-I. Murahashi, Y. Makabe, and K. Kunita, “Palladium(0)-catalyzed rearrangement of N-allylenamines. Synthesis of δ,ε-unsaturated imines and γ,δ-unsaturated carbonyl compounds,” Journal of Organic Chemistry, vol. 53, no. 19, pp. 4489–4495, 1988. View at Google Scholar · View at Scopus
  9. L. Jun, F. R. Bert, and C. Gowda, “A strategy for ready preparation of glycolipids for multivalent presentation,” Organic Letters, vol. 7, no. 18, pp. 3841–3843, 2005. View at Publisher · View at Google Scholar
  10. J. George, H. J. Jong, M. Mitsutoshi, and S. Toshimi, “Unsaturation effect on gelation behavior of aryl glycolipids,” Langmuir, vol. 20, no. 6, pp. 2060–2065, 2004. View at Publisher · View at Google Scholar
  11. B. Ernst, G. W. Hart, and P. Sinay, Eds., Carbohydrates in Chemistry and Biology, vol. 1–4, Wiley-VCH, Weinheim, Germany, 2000.
  12. B. O. Fraser-Reid, K. Tatsuta, and J. Thiem, Eds., Glycoscience, Chemistry and Chemical Biology, vol. 1–3, Springer, Berlin, Germany, 2001.
  13. S. Hanessian, Ed., Preparative Carbohydrate Chemistry, Marcel Dekker, New York, NY, USA, 1997.
  14. J. W. Daly, H. M. Garraffo, and T. F. Spande, Alkaloids, Chemical and Biological Perspectives, vol. 13, Pergamon Press, New York, NY, USA, 1999, Edited By: Pelletier, S. W.
  15. J. W. Daly, “The nature and origin of amphibian alkaloids,” in The Alkaloids, G. A. Cordell, Ed., vol. 50, pp. 141–169, Academic Press, New York, NY, USA, 1998. View at Google Scholar
  16. A. S. Howard and J. P. Michael, “Simple indolizidine and quinolizidine alkaloids,” in The Alkaloids, A. Brossi, Ed., pp. 183–308, Academic Press, New York, NY, USA, 1986. View at Google Scholar
  17. J. T. Wrobel, in The Alkaloids: Chemistry and Pharmacology, A. Brossi, Ed., vol. 26, pp. 327–385, Academic Press, New York, NY, USA, 1985.
  18. H. Takahata and T. Momose, “Simple indolizidine alkaloids,” in The Alkaloids Chemistry and Phamocology, G. Cordell, Ed., pp. 189–256, Academic Press, San Diego, Calif, USA, 1993. View at Google Scholar
  19. K. B. Upul and J. D. Robert, “Corrigendum to “A new synthesis of spiropyrrolidine-tetralones via an unexpected formal ring-contraction of 4-disubstituted piperidine to 3-disubstituted pyrrolidine”,” Tetrahedron Letters, vol. 52, no. 3, p. 469, 2011. View at Publisher · View at Google Scholar
  20. R. Rajesh and R. Raghunathan, “Regio- and stereoselective synthesis of novel tetraspiro-bispyrrolidine and bisoxindolopyrrolidine derivatives through 1,3-dipolar cycloaddition reaction,” Tetrahedron Letters, vol. 51, no. 44, pp. 5845–5848, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Fujimori, Japanese Patent Application, vol. 88, p. 2912, 1990, Chemical Abstracts, 112, 98409.
  22. J. E. Saxton, Ed., The Monoterpenoid Indole Alkaloids, Wiley, New York, NY, USA, 1983.
  23. J. A. Bristol, Ed., Annual Reports in Medicinal Chemistry, vol. 25, Academic Press, San Diego, Calif, USA, 1990.
  24. A. R. Sureshbabu, R. Raghunathan, K. Kumaresan, and N. Raaman, “Synthesis, characterisation and anti-microbial activity studies of novel dispiro-oxindolopyrrolizidines,” Current Chemical Biology, vol. 3, p. 432, 2009. View at Google Scholar
  25. E. Vedejs, A. Klapars, B. N. Naidu, D. W. Piotrowski, and F. C. Tucci, “Enantiocontrolled synthesis of (1S,2S)-6-desmethyl- (methylaziridino)mitosene,” Journal of the American Chemical Society, vol. 122, no. 22, pp. 5401–5402, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Pandey, A. K. Sahoo, and T. D. Bagul, “[3 + 2]-Cycloaddition of nonstabilized azomethine ylides. 10. An efficient strategy for the construction of x-azatricyclo[m.n.0.0a,b]alkanes by intramolecular cycloaddition of cyclic azomethine ylide,” Organic Letters, vol. 2, no. 15, pp. 2299–2301, 2000. View at Publisher · View at Google Scholar
  27. R. Grigg, J. Idle, P. McMeekin, and D. Vipond, “XY-ZH systems as potential 1,3-dipoles. Part 12. Mechanism of formation of azomethine ylides via the decarboxylative route from α-amino acids,” Journal of the Chemical Society, Perkin Transactions, vol. 1, pp. 2703–2713, 1988. View at Publisher · View at Google Scholar
  28. M. Poornachandran and R. Raghunathan, “Synthesis of pyrrolo[3,4-b]pyrroles and perhydrothiazolo[3′,4′-2,3]pyrrolo[4,5-c]pyrroles,” Tetrahedron, vol. 64, no. 27, pp. 6461–6474, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. R. M. Williams and G. J. Fegley, “Asymmetric synthesis of S-(-)-cucurbitine,” Tetrahedron Letters, vol. 33, no. 45, pp. 6755–6758, 1992. View at Publisher · View at Google Scholar · View at Scopus
  30. P. P. Garner, P. B. Cox, S. J. Klippenstein, W. J. Youngs, and D. B. McConville, “Tether-mediated stereocontrol in intramolecular azomethine ylide cycloadditions,” Journal of Organic Chemistry, vol. 59, no. 22, pp. 6510–6511, 1994. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Naga Siva Rao and R. Raghunathan, “An expedient diastereoselective synthesis of pyrrolidinyl spirooxindoles fused to sugar lactone via [3+2] cycloaddition of azomethine ylides,” Tetrahedron Letters, vol. 53, no. 7, pp. 854–858, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Rajesh, G. Periyasami, and R. Raghunathan, “An efficient one-pot synthesis of C2-symmetric triazolophanes by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction,” Tetrahedron Letters, vol. 51, no. 14, pp. 1896–1898, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. N. M. Xavier and A. P. Rauter, “Sugars containing α,β-unsaturated carbonyl systems: synthesis and their usefulness as scaffolds in carbohydrate chemistry,” Carbohydrate Research, vol. 343, no. 10-11, pp. 1523–1539, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. S. Yadav, B. V. S. Reddy, A. V. H. Gopal et al., “Domino Knoevenagel-hetero-Diels-Alder reactions: a stereoselective synthesis of sugar-annulated furo[3,2-b] pyrano[4,3-d]pyran derivatives,” Tetrahedron Letters, vol. 51, no. 17, pp. 2305–2308, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Sirisha and R. Raghunathan, “Stereoselective synthesis of novel glyco-pyrano pyrrolidines/pyrrolizidines/indolizidines through intramolecular [3+2] cycloaddition approach,” Tetrahedron Letters, vol. 51, no. 18, pp. 2515–2518, 2010. View at Publisher · View at Google Scholar · View at Scopus