Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013, Article ID 463907, 15 pages
http://dx.doi.org/10.1155/2013/463907
Research Article

Certain Rheological Aspects of Functionalized Guar Gum

1Shriram Institute of Technology, Gautum Buddh Technical University, I.E.T. Campus, Sitapur Road, Lucknow 226 021, India
2Gautum Buddh Technical University, I.E.T. Campus, Sitapur Road, Lucknow 226 021, India

Received 16 January 2013; Accepted 6 March 2013

Academic Editor: R. J. Linhardt

Copyright © 2013 Meenu Kapoor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. L. Wang and L. M. Zhang, “Viscoelastic characterization of a new guar gum derivative containing anionic carboxymethyl and cationic 2-hydroxy-3-(trimethylammonio)propyl substituents,” Industrial Crops and Products, vol. 29, no. 2-3, pp. 524–529, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. C. Sandolo, P. Matricardi, F. Alhaique, and T. Coviello, “Effect of temperature and cross-linking density on rheology of chemical cross-linked guar gum at the gel point,” Food Hydrocolloids, vol. 23, no. 1, pp. 210–220, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. H. N. Englyst, V. Anderson, and J. H. Cummings, “Starch and non-starch polysaccharides in some cereal foods,” Journal of the Science of Food and Agriculture, vol. 34, no. 12, pp. 1434–1440, 1983. View at Google Scholar · View at Scopus
  4. R. L. Feddersen and S. N. Thorp, Industrial Gums, Acaedemic Press, San Diego, Calif, USA, 1993.
  5. D. D. Roberts, J. S. Elmore, K. R. Langley, and J. Bakker, “Effects of sucrose, guar gum, and carboxymethylcellulose on the release of volatile flavor compounds under dynamic conditions,” Journal of Agricultural and Food Chemistry, vol. 44, no. 5, pp. 1321–1326, 1996. View at Google Scholar · View at Scopus
  6. D. R. Picout, S. B. Ross-Murphy, K. Jumel, and S. E. Harding, “Pressure cell assisted solution characterization of polysaccharides. 2. Locust bean gum and tara gum,” Biomacromolecules, vol. 3, no. 4, pp. 761–767, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. R. S. Blackburn, “Natural polysaccharides and their interactions with dye molecules: applications in effluent treatment,” Environmental Science and Technology, vol. 38, no. 18, pp. 4905–4909, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Urdiaín, A. Doménech-Sánchez, S. Albertí, V. J. Benedí, and J. A. Rosselló, “New method of DNA isolation from two food additives suitable for authentication in polymerase chain reaction assays,” Journal of Agricultural and Food Chemistry, vol. 53, no. 9, pp. 3345–3347, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. R. P. Singh, S. Pal, and D. Mal, “A high performance flocculating agent and viscosifiers based on cationic guar gum,” Macromolecular Symposia, vol. 242, pp. 227–234, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. P. Zhao, D. Ma, and L. M. Zhang, “New semi-interpenetrating network hydrogels: synthesis, characterization and properties,” Macromolecular Bioscience, vol. 6, no. 6, pp. 445–451, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. J. Z. Yi and L. M. Zhang, “Biodegradable blend films based on two polysaccharide derivatives and their use as Ibuprofen-releasing matrices,” Journal of Applied Polymer Science, vol. 103, no. 6, pp. 3553–3559, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. S. Venkataiah and E. G. Mahadevan, “Rheological properties of hydroxypropyl and sodium carboxymethyl substituted guar gums in aqueous solution,” Journal of Applied Polymer Science, vol. 27, no. 5, pp. 1533–1548, 1982. View at Publisher · View at Google Scholar · View at Scopus
  13. R. H. W. Wientjes, M. H. G. Duits, R. J. J. Jongschaap, and J. Mellema, “Linear rheology of guar gum solutions,” Macromolecules, vol. 33, no. 26, pp. 9594–9605, 2000. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Aubry and M. Moan, “Rheological behavior of a hydrophobically associating water soluble polymer,” Journal of Rheology, vol. 38, no. 6, pp. 1681–1692, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. L. M. Zhang, T. Kong, and P. S. Hui, “Semi-dilute solutions of hydroxypropyl guar gum: viscosity behaviour and thixotropic properties,” Journal of the Science of Food and Agriculture, vol. 87, no. 4, pp. 684–688, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. N. N. G. Swamy, T. S. Dharmarajan, and K. L. K. Paranjothi, “Derivatization of guar to various hydroxy alkyl derivatives and their characterization,” Indian Drugs, vol. 43, no. 9, pp. 756–759, 2006. View at Google Scholar · View at Scopus
  17. H. Gong, M. Liu, J. Chen, F. Han, C. Gao, and B. Zhang, “Synthesis and characterization of carboxymethyl guar gum and rheological properties of its solutions,” Carbohydrate Polymers, vol. 88, no. 3, pp. 1015–1022, 2012. View at Publisher · View at Google Scholar