Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013, Article ID 624967, 14 pages
http://dx.doi.org/10.1155/2013/624967
Review Article

Production Methods for Hyaluronan

1Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
2Universitatea “Aurel Vlaicu,” Str. E. Dragoi nr. 2, 310330 Arad, Romania
3Genencor International B.V., P.O. Box 218, 2300 AE Leiden, The Netherlands

Received 29 November 2012; Accepted 21 January 2013

Academic Editor: Thomas J. Heinze

Copyright © 2013 Carmen G. Boeriu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Hyaluronan is a polysaccharide with multiple functions in the human body being involved in creating flexible and protective layers in tissues and in many signalling pathways during embryonic development, wound healing, inflammation, and cancer. Hyaluronan is an important component of active pharmaceutical ingredients for treatment of, for example, arthritis and osteoarthritis, and its commercial value far exceeds that of other microbial extracellular polysaccharides. Traditionally hyaluronan is extracted from animal waste which is a well-established process now. However, biotechnological synthesis of biopolymers provides a wealth of new possibilities. Therefore, genetic/metabolic engineering has been applied in the area of tailor-made hyaluronan synthesis. Another approach is the controlled artificial (in vitro) synthesis of hyaluronan by enzymes. Advantage of using microbial and enzymatic synthesis for hyaluronan production is the simpler downstream processing and a reduced risk of viral contamination. In this paper an overview of the different methods used to produce hyaluronan is presented. Emphasis is on the advancements made in the field of the synthesis of bioengineered hyaluronan.