Table of Contents
International Journal of Carbohydrate Chemistry
Volume 2013, Article ID 624967, 14 pages
http://dx.doi.org/10.1155/2013/624967
Review Article

Production Methods for Hyaluronan

1Wageningen UR Food & Biobased Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
2Universitatea “Aurel Vlaicu,” Str. E. Dragoi nr. 2, 310330 Arad, Romania
3Genencor International B.V., P.O. Box 218, 2300 AE Leiden, The Netherlands

Received 29 November 2012; Accepted 21 January 2013

Academic Editor: Thomas J. Heinze

Copyright © 2013 Carmen G. Boeriu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. L. DeAngelis, “Glycosaminoglycan polysaccharide biosynthesis and production: today and tomorrow,” Applied Microbiology and Biotechnology, vol. 94, no. 2, pp. 295–305, 2012. View at Google Scholar
  2. H. G. Garg and C. A. Hales, Chemistry and Biology of Hyaluronan, Elsevier, 2004.
  3. K. Meyer and J. W. Palmer, “The polysaccharde of the vitreous humor,” The Journal of Biological Chemistry, vol. 107, no. 3, pp. 629–634, 1934. View at Google Scholar
  4. B. Weissmann and K. Meyer, “The structure of hyalobiuronic acid and of hyaluronic acid from umbilical cord,” Journal of the American Chemical Society, vol. 76, no. 7, pp. 1753–1757, 1954. View at Google Scholar · View at Scopus
  5. E. A. Balazs, “Ultrapure hyaluronic acid and the use thereof,” U.S. Patent, US4141973, 1979.
  6. P. L. DeAngelis, J. Papaconstantinou, and P. H. Weigel, “Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes,” The Journal of Biological Chemistry, vol. 268, no. 26, pp. 19181–19184, 1993. View at Google Scholar · View at Scopus
  7. P. L. DeAngelis, J. Papaconstantinou, and P. H. Weigel, “Isolation of a Streptococcus pyogenes gene locus that directs hyaluronan biosynthesis in acapsular mutants and in heterologous bacteria,” The Journal of Biological Chemistry, vol. 268, no. 20, pp. 14568–14571, 1993. View at Google Scholar · View at Scopus
  8. G. Blatter and J. C. Jacquinet, “The use of 2-deoxy-2-trichloroacetamido-D-glucopyranose derivatives in syntheses of hyaluronic acid-related tetra-, hexa-, and octa-saccharides having a methyl β-D-glucopyranosiduronic acid at the reducing end,” Carbohydrate Research, vol. 288, pp. 109–125, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. P. L. DeAngelis, L. C. Oatman, and D. F. Gay, “Rapid chemoenzymatic synthesis of monodisperse hyaluronan oligosaccharides with immobilized enzyme reactors,” The Journal of Biological Chemistry, vol. 278, no. 37, pp. 35199–35203, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. F. K. Kooy, Enzymatic Production of Hyaluronan Oligo- and Polysaccharides, Wageningen University, Wageningen, The Netherlands, 2010.
  11. B. Porsch, R. Laga, and C. Konak, “Batch and size-exclusion chromatographic characterization of ultra-high molar mass sodium hyaluronate containing low amounts of strongly scattering impurities by dual low angle light scattering/refractometric detection,” Journal of Liquid Chromatography and Related Technologies, vol. 31, no. 20, pp. 3077–3093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Shiedlin, R. Bigelow, W. Christopher et al., “Evaluation of hyaluronan from different sources: streptococcus zooepidemicus, rooster comb, bovine vitreous, and human umbilical cord,” Biomacromolecules, vol. 5, no. 6, pp. 2122–2127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. R. Mendichi and L. Soltes, “Hyaluronan molecular weight and polydispersity in some commercial intra-articular injectable preparations and in synovial fluid,” Inflammation Research, vol. 51, no. 3, pp. 115–116, 2002. View at Google Scholar · View at Scopus
  14. R. Stern, “Devising a pathway for hyaluronan catabolism: are we there yet?” Glycobiology, vol. 13, no. 12, pp. 105R–115R, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Erickson and R. Stern, “Chain gangs: new aspects of hyaluronan metabolism,” Biochemistry Research International, vol. 2012, Article ID 893947, 9 pages, 2012. View at Publisher · View at Google Scholar
  16. T. C. Laurent and J. R. E. Fraser, “Hyaluronan,” The FASEB Journal, vol. 6, no. 7, pp. 2397–2404, 1992. View at Google Scholar · View at Scopus
  17. P. L. DeAngelis, “Hyaluronan synthases: Fascinating glycosyltransferases from vertebrates, bacterial pathogens, and algal viruses,” Cellular and Molecular Life Sciences, vol. 56, no. 7-8, pp. 670–682, 1999. View at Publisher · View at Google Scholar · View at Scopus
  18. T. E. Hardingham and H. Muir, “The specific interaction of hyaluronic acid with cartilage proteoglycans,” Biochimica et Biophysica Acta, vol. 279, no. 2, pp. 401–405, 1972. View at Google Scholar · View at Scopus
  19. V. C. Hascall, “Hyaluronan, a common thread,” Glycoconjugate Journal, vol. 17, no. 7–9, pp. 607–616, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Afratis, C. Gialeli, D. Nikitovic et al., “Glycosaminoglycans: key players in cancer cell biology and treatment,” FEBS Journal, vol. 279, no. 7, pp. 1177–1197, 2012. View at Publisher · View at Google Scholar
  21. C. Schiraldi, A. La Gatta, and M. De Rosa, “Biotechnological production and application of hyaluronan,” in Biopolymers, M. Elnashar, Ed., pp. 387–412, InTech, Rijeka, Croatia, 2010. View at Google Scholar
  22. F. Freitas, V. D. Alves, and M. A. M. Reis, “Advances in bacterial exopolysaccharides: from production to biotechnological applications,” Trends in Biotechnology, vol. 29, no. 8, pp. 388–398, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. B. D. Ulery, L. S. Nair, and C. T. Laurencin, “Biomedical applications of biodegradable polymers,” Journal of Polymer Science B, vol. 49, no. 12, pp. 832–864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Stern, A. A. Asari, and K. N. Sugahara, “Hyaluronan fragments: an information-rich system,” European Journal of Cell Biology, vol. 85, no. 8, pp. 699–715, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. B. F. Chong, L. M. Blank, R. Mclaughlin, and L. K. Nielsen, “Microbial hyaluronic acid production,” Applied Microbiology and Biotechnology, vol. 66, no. 4, pp. 341–351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Ghatak, S. Misra, and B. P. Toole, “Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells by suppressing the phosphoinositide 3-kinase/Akt cell survival pathway,” The Journal of Biological Chemistry, vol. 277, no. 41, pp. 38013–38020, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Y. Lee and A. P. Spicer, “Hyaluronan: a multifunctional, megaDalton, stealth molecule,” Current Opinion in Cell Biology, vol. 12, no. 5, pp. 581–586, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. L. DeAngelis and P. H. Weigel, “Immunochemical confirmation of the primary structure of streptococcal hyaluronan synthase and synthesis of high molecular weight product by the recombinant enzyme,” Biochemistry, vol. 33, no. 31, pp. 9033–9039, 1994. View at Google Scholar · View at Scopus
  29. P. Prehm, “Hyaluronate is synthesized at plasma membranes,” Biochemical Journal, vol. 220, no. 2, pp. 597–600, 1984. View at Google Scholar · View at Scopus
  30. A. A. E. Chavaroche, L. A. M. van den Broek, and G. Eggink, “Production methods for heparosan, a precursor of heparin and heparan sulfate,” Carbohydrate Polymers, vol. 93, no. 1, pp. 38–47, 2013. View at Publisher · View at Google Scholar
  31. N. Itano, “Hyaluronan biosynthesis: a multifaceted process,” Connective Tissue, vol. 33, no. 3, pp. 221–226, 2001. View at Google Scholar · View at Scopus
  32. C. A. de la Motte and J. A. Drazba, “Viewing hyaluronan: imaging contributes to imagining new roles for this amazing matrix polymer,” Journal of Histochemistry and Cytochemistry, vol. 59, no. 3, pp. 252–257, 2011. View at Google Scholar
  33. N. Itano and K. Kimata, “Molecular cloning of human hyaluronan synthase,” Biochemical and Biophysical Research Communications, vol. 222, no. 3, pp. 816–820, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. A. P. Spicer, M. L. Augustine, and J. A. McDonald, “Molecular cloning and characterization of a putative mouse hyaluronan synthase,” The Journal of Biological Chemistry, vol. 271, no. 38, pp. 23400–23406, 1996. View at Publisher · View at Google Scholar · View at Scopus
  35. N. Itano, T. Sawai, M. Yoshida et al., “Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 25085–25092, 1999. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Heldin, “Molecular mechanisms that regulate hyaluronan synthesis,” Gene Therapy and Molecular Biology, vol. 3, pp. 465–474, 1999. View at Google Scholar
  37. A. Jacobson, J. Brinck, M. J. Briskin, A. P. Spicer, and P. Heldin, “Expression of human hyaluronan syntheses in response to external stimuli,” Biochemical Journal, vol. 348, no. 1, pp. 29–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  38. B. A. Dougherty and I. Van de Rijn, “Molecular characterization of hasB from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose dehydrogenase activity,” The Journal of Biological Chemistry, vol. 268, no. 10, pp. 7118–7124, 1993. View at Google Scholar · View at Scopus
  39. B. A. Dougherty and I. Van de Rijn, “Molecular characterization of hasA from an operon required for hyaluronic acid synthesis in group A streptococci,” The Journal of Biological Chemistry, vol. 269, no. 1, pp. 169–175, 1994. View at Google Scholar · View at Scopus
  40. D. L. Crater, B. A. Dougherty, and I. Van de Rijn, “Molecular characterization of hasC from an operon required for hyaluronic acid synthesis in group A streptococci. Demonstration of UDP-glucose pyrophosphorylase activity,” The Journal of Biological Chemistry, vol. 270, no. 48, pp. 28676–28680, 1995. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Markovitz, J. A. Cifonelli, and A. Dorfman, “The biosynthesis of hyaluronic acid by group A Streptococcus. VI. Biosynthesis from uridine nucleotides in cell-free extracts,” The Journal of Biological Chemistry, vol. 234, pp. 2343–2350, 1959. View at Google Scholar · View at Scopus
  42. K. Kumari and P. H. Weigel, “Molecular cloning, expression, and characterization of the authentic hyaluronan synthase from Group C Streptococcus equisimilis,” The Journal of Biological Chemistry, vol. 272, no. 51, pp. 32539–32546, 1997. View at Publisher · View at Google Scholar · View at Scopus
  43. P. L. DeAngelis and A. M. Achyuthan, “Yeast-derived recombinant DG42 protein of Xenopus can synthesize hyaluronan in vitro,” The Journal of Biological Chemistry, vol. 271, no. 39, pp. 23657–23660, 1996. View at Publisher · View at Google Scholar · View at Scopus
  44. P. H. Weigel, V. C. Hascall, and M. Tammi, “Hyaluronan synthases,” The Journal of Biological Chemistry, vol. 272, no. 22, pp. 13997–14000, 1997. View at Publisher · View at Google Scholar · View at Scopus
  45. P. L. DeAngelis, W. Jing, M. V. Graves, D. E. Burbank, and J. L. Van Etten, “Hyaluronan synthase of chlorella virus PBCV-1,” Science, vol. 278, no. 5344, pp. 1800–1803, 1997. View at Publisher · View at Google Scholar · View at Scopus
  46. P. M. Coutinho, E. Deleury, G. J. Davies, and B. Henrissat, “An evolving hierarchical family classification for glycosyltransferases,” Journal of Molecular Biology, vol. 328, no. 2, pp. 307–317, 2003. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Jong, C. H. Wu, H. M. Chen et al., “Identification and characterization of CPS1 as a hyaluronic acid synthase contributing to the pathogenesis of Cryptococcus neoformans infection,” Eukaryotic Cell, vol. 6, no. 8, pp. 1486–1496, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. P. L. DeAngelis, W. Jing, R. R. Drake, and A. M. Achyuthan, “Identification and molecular cloning of a unique hyaluronan synthase from Pasteurella multocida,” The Journal of Biological Chemistry, vol. 273, no. 14, pp. 8454–8458, 1998. View at Publisher · View at Google Scholar · View at Scopus
  49. P. H. Weigel and P. L. DeAngelis, “Hyaluronan synthases: a decade-plus of novel glycosyltransferases,” The Journal of Biological Chemistry, vol. 282, no. 51, pp. 36777–36781, 2007. View at Publisher · View at Google Scholar · View at Scopus
  50. S. Bodevin-Authelet, M. Kusche-Gullberg, P. E. Pummill, P. L. DeAngelis, and U. Lindahl, “Biosynthesis of hyaluronan: direction of chain elongation,” The Journal of Biological Chemistry, vol. 280, no. 10, pp. 8813–8818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  51. P. E. Pummill, T. A. Kane, E. S. Kempner, and P. L. DeAngelis, “The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer,” Biochimica et Biophysica Acta, vol. 1770, no. 2, pp. 286–290, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. P. L. DeAngelis, “Microbial glycosaminoglycan glycosyltransferases,” Glycobiology, vol. 12, no. 1, pp. 9R–16R, 2002. View at Google Scholar · View at Scopus
  53. K. Rilla, H. Siiskonen, A. P. Spicer, J. M. T. Hyttinen, M. I. Tammi, and R. H. Tammi, “Plasma membrane residence of hyaluronan synthase is coupled to its enzymatic activity,” The Journal of Biological Chemistry, vol. 280, no. 36, pp. 31890–31897, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Nardini, M. Ori, D. Vigetti, R. Gornati, I. Nardi, and R. Perris, “Regulated gene expression of hyaluronan synthases during Xenopus laevis development,” Gene Expression Patterns, vol. 4, no. 3, pp. 303–308, 2004. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Y. L. Tien and A. P. Spicer, “Three vertebrate hyaluronan synthases are expressed during mouse development in distinct spatial and temporal patterns,” Developmental Dynamics, vol. 233, no. 1, pp. 130–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Suzuki, T. Asplund, H. Yamashita, C. H. Heldin, and P. Heldin, “Stimulation of hyaluronan biosynthesis by platelet-derived growth factor-BB and transforming growth factor-β1 involves activation of protein kinase C,” Biochemical Journal, vol. 307, no. 3, pp. 817–821, 1995. View at Google Scholar · View at Scopus
  57. H. Chao and A. P. Spicer, “Natural antisense mRNAs to hyaluronan synthase 2 inhibit hyaluronan biosynthesis and cell proliferation,” The Journal of Biological Chemistry, vol. 280, no. 30, pp. 27513–27522, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. D. Vigetti, A. Genasetti, E. Karousou et al., “Modulation of hyaluronan synthase activity in cellular membrane fractions,” The Journal of Biological Chemistry, vol. 284, no. 44, pp. 30684–30694, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. L. M. Blank, P. Hugenholtz, and L. K. Nielsen, “Evolution of the hyaluronic acid synthesis (has) operon in Streptococcus zooepidemicus and other pathogenic streptococci,” Journal of Molecular Evolution, vol. 67, no. 1, pp. 13–22, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. W. Y. Chen, E. Marcellin, J. Hung, and L. K. Nielsen, “Hyaluronan molecular weight is controlled by UDP-N-acetylglucosamine concentration in Streptococcus zooepidemicus,” The Journal of Biological Chemistry, vol. 284, no. 27, pp. 18007–18014, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Soltes, R. Mendichi, D. Lath, M. Mach, and D. Bakoš, “Molecular characteristics of some commercial high-molecular-weight hyaluronans,” Biomedical Chromatography, vol. 16, no. 7, pp. 459–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. P. S. Harmon, E. P. Maziarz, and X. M. Liu, “Detailed characterization of hyaluronan using aqueous size exclusion chromatography with triple detection and multiangle light scattering detection,” Journal of Biomedical Materials Research B, vol. 100, no. 7, pp. 1955–1960, 2012. View at Google Scholar
  63. E. U. Ignatova and A. N. Gurov, “Principles of extraction and purification of hyaluronic acid,” Khimiko-Farmatsevticheskii Zhurnal, vol. 24, no. 3, pp. 42–46, 1990. View at Google Scholar
  64. I. Amagai, Y. Tashiro, and H. Ogawa, “Improvement of the extraction procedure for hyaluronan from fish eyeball and the molecular characterization,” Fisheries Science, vol. 75, no. 3, pp. 805–810, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. M. O'Regan, I. Martini, F. Crescenzi, C. De Luca, and M. Lansing, “Molecular mechanisms and genetics of hyaluronan biosynthesis,” International Journal of Biological Macromolecules, vol. 16, no. 6, pp. 283–286, 1994. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Kogan, L. Šoltés, R. Stern, and P. Gemeiner, “Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications,” Biotechnology Letters, vol. 29, no. 1, pp. 17–25, 2007. View at Publisher · View at Google Scholar · View at Scopus
  67. J. C. Thonard, S. A. Migliore, and R. Blustein, “Isolation of hyaluronic acid from broth cultures of Streptococci,” The Journal of Biological Chemistry, vol. 239, pp. 726–728, 1964. View at Google Scholar · View at Scopus
  68. F. E. Kendall, M. Heidelberger, and M. H. Dawson, “A serologically inactive polysaccharide elaborated by mocoid strains of group A hemolytic Streptococcus,” The Journal of Biological Chemistry, vol. 118, no. 1, pp. 61–69, 1937. View at Google Scholar
  69. B. Holmstrom and J. Ricica, “Production of hyaluronic acid by a Streptococcal strain in batch culture,” Applied Environmental Microbiology, vol. 15, no. 6, pp. 1409–1413, 1967. View at Google Scholar
  70. J. H. Kim, S. J. Yoo, D. K. Oh et al., “Selection of a Streptococcus equi mutant and optimization of culture conditions for the production of high molecular weight hyaluronic acid,” Enzyme and Microbial Technology, vol. 19, no. 6, pp. 440–445, 1996. View at Publisher · View at Google Scholar · View at Scopus
  71. N. Izawa, T. Hanamizu, R. Iizuka et al., “Streptococcus thermophilus produces exopolysaccharides including hyaluronic acid,” Journal of Bioscience and Bioengineering, vol. 107, no. 2, pp. 119–123, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. N. Izawa, M. Serata, T. Sone, T. Omasa, and H. Ohtake, “Hyaluronic acid production by recombinant Streptococcus thermophilus,” Journal of Bioscience and Bioengineering, vol. 111, no. 6, pp. 665–670, 2011. View at Publisher · View at Google Scholar · View at Scopus
  73. H. J. Gao, G. C. Du, and J. Chen, “Analysis of metabolic fluxes for hyaluronic acid (HA) production by Streptococcus zooepidemicus,” World Journal of Microbiology and Biotechnology, vol. 22, no. 4, pp. 399–408, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. X. J. Duan, H. X. Niu, W. S. Tan, and X. Zhang, “Mechanism analysis of effect of oxygen on molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus,” Journal of Microbiology and Biotechnology, vol. 19, no. 3, pp. 299–306, 2009. View at Publisher · View at Google Scholar · View at Scopus
  75. J. Zhang, X. Ding, L. Yang, and Z. Kong, “A serum-free medium for colony growth and hyaluronic acid production by Streptococcus zooepidemicus NJUST01,” Applied Microbiology and Biotechnology, vol. 72, no. 1, pp. 168–172, 2006. View at Publisher · View at Google Scholar · View at Scopus
  76. J. H. Im, J. M. Song, J. H. Kang, and D. J. Kang, “Optimization of medium components for high-molecular-weight hyaluronic acid production by Streptococcus sp. ID9102 via a statistical approach,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 11, pp. 1337–1344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. D. C. Armstrong, M. J. Cooney, and M. R. Johns, “Growth and amino acid requirements of hyaluronic-acid producing Streptococcus zooepidemicus,” Applied Microbiology and Biotechnology, vol. 47, no. 3, pp. 309–312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  78. M. J. Cooney, L. T. Goh, P. L. Lee, and M. R. Johns, “Structured model-based analysis and control of the hyaluronic acid fermentation by Streptococcus zooepidemicus: physiological implications of glucose and complex-nitrogen-limited growth,” Biotechnology Progress, vol. 15, no. 5, pp. 898–910, 1999. View at Publisher · View at Google Scholar · View at Scopus
  79. W. C. Huang, S. J. Chen, and T. L. Chen, “The role of dissolved oxygen and function of agitation in hyaluronic acid fermentation,” Biochemical Engineering Journal, vol. 32, no. 3, pp. 239–243, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. B. F. Chong and L. K. Nielsen, “Aerobic cultivation of Streptococcus zooepidemicus and the role of NADH oxidase,” Biochemical Engineering Journal, vol. 16, no. 2, pp. 153–162, 2003. View at Publisher · View at Google Scholar · View at Scopus
  81. B. F. Chong and L. K. Nielsen, “Amplifying the cellular reduction potential of Streptococcus zooepidemicus,” Journal of Biotechnology, vol. 100, no. 1, pp. 33–41, 2003. View at Publisher · View at Google Scholar · View at Scopus
  82. T. F. Wu, W. C. Huang, Y. C. Chen, Y. G. Tsay, and C. S. Chang, “Proteomic investigation of the impact of oxygen on the protein profiles of hyaluronic acid-producing Streptococcus zooepidemicus,” Proteomics, vol. 9, no. 19, pp. 4507–4518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  83. M. R. Johns, L. T. Goh, and A. Oeggerli, “Effect of pH, agitation and aeration on hyaluronic acid production by Streptococcus zooepidemicus,” Biotechnology Letters, vol. 16, no. 5, pp. 507–512, 1994. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Hasegawa, M. Nagatsuru, M. Shibutani, S. Yamamoto, and S. Hasebe, “Productivity of concentrated hyaluronic acid using a Maxblend (R) fermentor,” Journal of Bioscience and Bioengineering, vol. 88, no. 1, pp. 68–71, 1999. View at Publisher · View at Google Scholar · View at Scopus
  85. X. Zhang, X. J. Duan, and W. S. Tan, “Mechanism for the effect of agitation on the molecular weight of hyaluronic acid produced by Streptococcus zooepidemicus,” Food Chemistry, vol. 119, no. 4, pp. 1643–1646, 2010. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Cazzola, F. O'regan, and V. Corsa, “Culture medium and process for the preparation of high molecular weight hyaluronic acid,” Fidia Advanced Biopolymers S.R.L., 2003.
  87. I. Van De Rijn, “Streptococcal hyaluronic acid: Proposed mechanisms of degradation and loss of synthesis during stationary phase,” Journal of Bacteriology, vol. 156, no. 3, pp. 1059–1065, 1983. View at Google Scholar · View at Scopus
  88. A. Mausolf, J. Jungmann, H. Robenek, and P. Prehm, “Shedding of hyaluronate synthase from streptococci,” Biochemical Journal, vol. 267, no. 1, pp. 191–196, 1990. View at Google Scholar · View at Scopus
  89. D. C. Ellwood, C. G. T. Evans, G. M. Dunn et al., “Production of hyaluronic acid,” Fermentech Medical Limited, 1996.
  90. W. C. Huang, S. J. Chen, and T. L. Chen, “Production of hyaluronic acid by repeated batch fermentation,” Biochemical Engineering Journal, vol. 40, no. 3, pp. 460–464, 2008. View at Publisher · View at Google Scholar · View at Scopus
  91. L. M. Blank, R. L. McLaughlin, and L. K. Nielsen, “Stable production of hyaluronic acid in streptococcus zooepidemicus chemostats operated at high dilution rate,” Biotechnology and Bioengineering, vol. 90, no. 6, pp. 685–693, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. H. Y. Han, S. H. Jang, E. C. Kim et al., “Microorganism producing hyaluronic acid and purification method of hyaluronic acid,” p. 26, 2004.
  93. S. Stahl, “Methods and means for the production of hyaluronic acid,” US6090596, 2000.
  94. E. Marcellin, W. Y. Chen, and L. K. Nielsen, “Understanding plasmid effect on hyaluronic acid molecular weight produced by Streptococcus equi subsp. zooepidemicus,” Metabolic Engineering, vol. 12, no. 1, pp. 62–69, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. J. Z. Sheng, P. X. Ling, X. Q. Zhu et al., “Use of induction promoters to regulate hyaluronan synthase and UDP-glucose-6-dehydrogenase of Streptococcus zooepidemicus expression in Lactococcus lactis: a case study of the regulation mechanism of hyaluronic acid polymer,” Journal of Applied Microbiology, vol. 107, no. 1, pp. 136–144, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. H. Yu and G. Stephanopoulos, “Metabolic engineering of Escherichia coli for biosynthesis of hyaluronic acid,” Metabolic Engineering, vol. 10, no. 1, pp. 24–32, 2008. View at Publisher · View at Google Scholar · View at Scopus
  97. Z. Mao, H. D. Shin, and R. Chen, “A recombinant E. coli bioprocess for hyaluronan synthesis,” Applied Microbiology and Biotechnology, vol. 84, no. 1, pp. 63–69, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. B. Widner, R. Behr, S. Von Dollen et al., “Hyaluronic acid production in Bacillus subtilis,” Applied and Environmental Microbiology, vol. 71, no. 7, pp. 3747–3752, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. Z. Mao and R. R. Chen, “Recombinant synthesis of hyaluronan by Agrobacterium sp,” Biotechnology Progress, vol. 23, no. 5, pp. 1038–1042, 2007. View at Publisher · View at Google Scholar · View at Scopus
  100. S. B. Prasad, G. Jayaraman, and K. B. Ramachandran, “Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 86, no. 1, pp. 273–283, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. L. J. Chien and C. K. Lee, “Hyaluronic acid production by recombinant Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 77, no. 2, pp. 339–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  102. S. B. Prasad, K. B. Ramachandran, and G. Jayaraman, “Transcription analysis of hyaluronan biosynthesis genes in Streptococcus zooepidemicus and metabolically engineered Lactococcus lactis,” Applied Microbiology and Biotechnology, vol. 94, no. 6, pp. 1593–1607, 2012. View at Google Scholar
  103. A. Sloma et al., “Recombinant expression of bacterial hyaluronan synthase operon genes in Bacillus and hyaluronic acid production,” p. 218, 2003.
  104. M. V. Graves, D. E. Burbank, R. Roth, J. Heuser, P. L. Deangelis, and J. L. Van Etten, “Hyaluronan synthesis in virus PBCV-1-infected chlorella-like green algae,” Virology, vol. 257, no. 1, pp. 15–23, 1999. View at Publisher · View at Google Scholar · View at Scopus
  105. C. De Luca, M. Lansing, I. Martini et al., “Enzymatic synthesis of hyaluronic acid with regeneration of sugar nucleotides,” Journal of the American Chemical Society, vol. 117, no. 21, pp. 5869–5870, 1995. View at Publisher · View at Google Scholar · View at Scopus
  106. P. L. DeAngelis, “Monodisperse hyaluronan polymers: synthesis and potential applications,” Current Pharmaceutical Biotechnology, vol. 9, no. 4, pp. 246–248, 2008. View at Publisher · View at Google Scholar · View at Scopus
  107. F. K. Kooy, M. Ma, H. H. Beeftink, G. Eggink, J. Tramper, and C. G. Boeriu, “Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis,” Analytical Biochemistry, vol. 384, no. 2, pp. 329–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  108. Y. I. Shimma, F. Saito, F. Oosawa, and Y. Jigami, “Construction of a library of human glycosyltransferases immobilized in the cell wall of Saccharomyces cerevisiae,” Applied and Environmental Microbiology, vol. 72, no. 11, pp. 7003–7012, 2006. View at Publisher · View at Google Scholar · View at Scopus
  109. W. Jing and P. L. De Angelis, “Dissection of the two transferase activities of the Pasteurella multocida hyaluronan synthase: two active sites exist in one polypeptide,” Glycobiology, vol. 10, no. 9, pp. 883–889, 2000. View at Google Scholar · View at Scopus
  110. W. Jing and P. L. DeAngelis, “Analysis of the two active sites of the hyaluronan synthase and the chondroitin synthase of Pasteurella multocida,” Glycobiology, vol. 13, no. 10, pp. 661–671, 2003. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Milewski, I. Gabriel, and J. Olchowy, “Enzymes of UDP-GlcNAc biosynthesis in yeast,” Yeast, vol. 23, no. 1, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  112. H. Zhao and W. A. Van Der Donk, “Regeneration of cofactors for use in biocatalysis,” Current Opinion in Biotechnology, vol. 14, no. 6, pp. 583–589, 2003. View at Publisher · View at Google Scholar · View at Scopus
  113. A. Ruffing and R. R. Chen, “Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis,” Microbial Cell Factories, vol. 5, p. 25, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. W. Liu and P. Wang, “Cofactor regeneration for sustainable enzymatic biosynthesis,” Biotechnology Advances, vol. 25, no. 4, pp. 369–384, 2007. View at Publisher · View at Google Scholar · View at Scopus
  115. C. A. G. M. Weijers, M. C. R. Franssen, and G. M. Visser, “Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides,” Biotechnology Advances, vol. 26, no. 5, pp. 436–456, 2008. View at Publisher · View at Google Scholar · View at Scopus